Numerical modeling of one-dimensional binary solidification - The classical two-phase stefan problem / Lee D., Alexandrov D.V. // International Journal of Pure and Applied Mathematics. - 2010. - V. 58, l. 4. - P. 381-416.

ISSN:
13118080
Type:
Article
Abstract:
We consider in this work the heat diffusion of one-dimensional spatial variable in the semi-infinite interval. Both fixed and moving coordinates will be considered. We investigate for each model the numerical methods and discuss the issues in software design and the trade-offs between accuracy and efficiency, based on the analytic solution. In particular, we propose a threshold strategy in fixed coordinate static grid approach and show it performs very well in many tests. The observations can be helpful in practical applications of mushy layer models, for which no explicit solution is expected. © 2010 Academic Publications.
Author keywords:
Heat transfer; Solidification; Stefan problem
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649803924&partnerID=40&md5=53f693c3a5dcf5c1ba7efdbc327c566f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649803924&partnerID=40&md5=53f693c3a5dcf5c1ba7efdbc327c566f
Affiliations Department of Mathematics, Tunghai University, Taichung, 40704, Taiwan; Department of Mathematical Physics, Ural State University, 51, Lenin Ave, Ekaterinburg, 620083, Russian Federation
Author Keywords Heat transfer; Solidification; Stefan problem
References Alexandrov, D.V., Solidification with a quasiequilibrium two-phase zone (2001) Acta Mater., 49, pp. 759-764; Alexandrov, D.V., Aseev, D.L., Nizovtseva, I.G., Huang, H.-N., Lee, D., Nonlinear dynamics of directional solidification with a mushy layer. Analytic solutions of the problem (2007) Int. J. Heat and Mass Transfer, 50, pp. 3616-3623; Alexandrov, D.V., Nonlinear dynamics of solidification in three-component systems (2008) Doklady Physics, 53 (9), pp. 471-475; Ang, W.-T., A numerical method based on integro-differential formulation for solving a one-dimensional Stefan problem (2008) Numerical Methods for Partial Differential Equations, 24, pp. 939-949; De Boor, C., (2001) A Practical Guide to Splines, , Revised Edition, Springer-Verlag, New York; De Boor, C., Convergence of cubic spline interpolation with the not-a-knot condition (1985) MRC, 2876. , University of Wisconsin at Madison; Borisov, V.T., (1987) Theory of the Two-Phase Zone of A Metal Ingot, , Moscow, Metallurgiya Publishing House; Boyd, J.P., (2001) Chebyshev and Fourier-Spectral Methods, , Second Edition, Dover, Mineola, New York; Buyevich, Y.A., Alexandrov, D.V., Mansurov, V.V., (2001) Macrokinetics of Crystallization, , Begell House, New York-Wallingford; Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., (2006) Spectral Methods, Fundamentals in Single Domains, , Springer, New York; Crank, J., (1984) Free and Moving Boundary Problems, , Clarendon Press, Oxford, England; Fowler, A.C., The formation of freckles in binary alloys (1985) IMA J. Appl. Math., 35, pp. 159-174; Hills, R.N., Loper, D.E., Roberts, P.H., A thermodynamically consistent model of a mushy zone (1983) Quarterly Jnl. of Mechanics and App. Maths., 36, pp. 505-540; Huppert, E.H., Worster, M.G., Dynamic solidification of a binary melt (1985) Nature, 314, pp. 703-707; Ivantsov, G.P., Diffusive supercooling in binary alloy solidification (1951) Dokl. Akad. Nauk SSSR, 81, pp. 179-182; Javierre, E., Vuik, C., Vermolen, F.J., Van Der Zwaag, S., A comparison of numerical models for one-dimensional Stefan problem (2006) JCAM, 192, pp. 445-459; Morison, J., McPhee, M., Muench, R., The lead ex experiment (1993) EOS. Trans. AGU, 74, pp. 393-397; Mullins, W.W., Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy (1964) J. Appl. Phys., 35, p. 444451; Osher, S., Fedkiw, R., (2003) Level Set Methods and Dynamic Implicit Surfaces, , Springer, New York; Saad, Y., (2003) Iterative Methods for Sparse Linear System, Second Edition, , SIAM, Philadelphia, USA; Sethian, J.A., (1999) Level Set Methods and Fast Marching Methods, , Cambridge University Press, New York; Shen, J., Tang, T., (2006) Spectral and High-Order Methods with Applications, , Science Press, Beijing, P.R. China; Stefan, I., Übereinige probleme der theorie der warmeleitung (1898) Sitzber. Kais. Akad. Wiss. Wien, Math.-Naturw. Kl., 98, p. 437438. , No. IIa; Tang, T., Xu, J., (2007) Adaptive Computations: Theory with Algorithms, , Science Press, Beijing, P.R. China; Vuik, C., Some historical notes about the Stefan problem (1993) Nieuw Archief voor Wiskunde, 157. , 4e, Serie 11; Wettlaufer, J.S., Worster, M.G., Huppert, H.E., Solidification of leads: Theory, experiment and field observations (2000) J. Geophys. Res., 105, pp. 1123-1134; Worster, M.G., Solidification of an alloy from a cooled boundary (1988) J. Fluid Mech., 167, pp. 481-501
Correspondence Address Lee, D.; Department of Mathematics, Tunghai University, Taichung, 40704, Taiwan; email: Dmitri.Alexandrov@usu.ru
Language of Original Document English
Abbreviated Source Title Int. J. Pure Appl. Math.
Source Scopus