The Stefan problem for unsteady-state evaporation of a volatile component in the solid-liquid-gas systems: Exact analytical solution / Alexandrov D.V., Malygin A.P. // International Journal of Heat and Mass Transfer. - 2010. - V. 53, l. 13-14. - P. 2790-2794.

ISSN:
00179310
Type:
Article
Abstract:
We present a theoretical analysis of isothermal evaporation of a volatile component from a solid phase covered by a liquid layer. We consider binary systems when the covering liquid layer is produced by thermal decomposition of the solid material. It is shown that the relaxation time of the volatile concentration distribution in the liquid is much shorter than the characteristic time of motion of the dissolution interface; i.e., the instantaneous profile of volatile concentration at any time is a linear function of the spatial coordinate. A new nonlinear Stefan-type problem of evaporation in a solid-liquid-vacuum system is developed that involves two moving phase transition interfaces: an evaporating interface and a dissolving interface. Exact analytical solutions of the nonlinear Stefan-type problem under consideration are found in a parametric form. It is shown that the dissolving interface moves faster than the evaporating interface; i.e., the thickness of the liquid layer increases with time. An increase in evaporation rate coefficient leads to a steepening of the concentration gradient across the liquid layer, changing the volatile concentration at the evaporating interface, and the evaporative flux changes accordingly. The model under consideration is extended to the case when the evaporation flux becomes a weakly nonlinear function of the impurity concentration at the evaporating interface. Exact parametric solutions are found in this case too. © 2010 Elsevier Ltd. All rights reserved.
Author keywords:
Evaporation; Moving boundaries; Solid-liquid-gas systems
Index keywords:
Binary systems; Characteristic time; Concentration distributions; Concentration gradients; Dissolution interfaces; Evaporation flux; Evaporation rate; Evaporative flux; Exact analytical solutions; Imp
DOI:
10.1016/j.ijheatmasstransfer.2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949915552&doi=10.1016%2fj.ijheatmasstransfer.2010.02.019&partnerID=40&md5=ef5b33cc71f1d43f38b445a0de65ebbf
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949915552&doi=10.1016%2fj.ijheatmasstransfer.2010.02.019&partnerID=40&md5=ef5b33cc71f1d43f38b445a0de65ebbf
Affiliations Urals State University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg, 620083, Russian Federation
Author Keywords Evaporation; Moving boundaries; Solid-liquid-gas systems
References Rubinshtein, L.I., (1971) The Stefan Problem, , AMS, Providence; Meirmanov, A.M., (1992) The Stefan Problem, , De Gruyter, Belin; Frankel, M., Roytburd, V., Dynamics of thermally-insulated nonequilibrium Stefan problem (2007) J. Evol. Equ., 7, pp. 317-345; Stefan, J., Versuche über Verdampfung, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften (1873) Mathematische-Naturwissenschaftliche Classe, II Abtheilung, 68, pp. 385-423; Fuchs, N.A., (1959) Evaporation and Droplet Growth in Gaseous Media, , Pergamon, NY; Gordon, A.R., Starodubov, L.S., Zayavlin, V.R., Question of Stefan flow in liquids (1978) J. Eng. Thermophys., 34, pp. 1059-1065; Prodi, F., Santachiara, G., Cornetti, C., Measurements of diffusiophoretic velocities of aerosol particles in the transition region (1979) Journal of Aerosol Science, 33, pp. 181-188; Kalinchak, V.V., Influence of Stefan flow and convection on the kinetics of chemical reactions and heat and mass exchange of carbon particles with gases (2001) J. Eng. Phys. Thermophys., 74, pp. 323-330; Alexandrov, D.V., Solidification with a quasiequilibrium mushy region: exact analytical solution of nonlinear model (2001) J. Crystal Growth, 22, pp. 816-821; Alexandrov, D.V., Nonlinear dynamics of solidification in three-component systems (2008) Doklady Phys., 53 (9), pp. 471-475; Alexandrov, D.V., Malygin, A.P., Alexandrova, I.V., Solidification of leads: approximate solutions of non-linear problem (2006) Ann. Glaciol., 44, pp. 118-122; Hicks, B.B., Deposition of atmospheric acidity (2007) Atmospheric Acidity: Sources, Consequences and Abatement, pp. 178-180. , Radojevic M., and Harrison R.M. (Eds), Springer; Chandra, S., di Marzo, M., Qiao, Y.M., Tartarini, P., Effect of liquid-solid contact angle on droplet evaporation (1996) Fire Safety J., 27 (2), pp. 141-158; Moon, Y.W., You, Y.W., Kim, Y.M., Numerical modeling for evaporating spray dynamics in high-pressure environment (1998) The Fourth Int. Symp. COMODIA, 98, pp. 417-422; Sefiane, K., The coupling between evaporation and adsorbed surfactant accumulation and its effect on the wetting and spreading behaviour of volatile drops on a hot surface (2006) J. Petrol. Sci. Eng., 51, pp. 238-252; Hishida, K., Nishiyama, K., On the variation of heat exchange and evaporation at the sea surface in the Western North Pacific Ocean (1969) J. Oceanogr. Soc. Jpn., 25 (1), pp. 1-9; Bengtsson, L., Evaporation from a snow cover (1980) Nordic Hydrol., 11, pp. 221-234; Kuzuha, Y., Ikebuchi, S., Tanaka, K., Evaporation from a complex land-use surface - how to estimate average evaporation, Exchange processes at the land surface for a range of space and time scales (1993) Proc. Yokohama Symp, pp. 73-80. , July, IAHS Publ, No. 212; AL-Khlaifat, A.L., Dead sea rate of evaporation (2008) Am. J. Appl. Sci., 5 (8), pp. 934-942; Chuntonov, K., Setina, J., New lithium gas sorbents. I. The evaporable variant (2008) J. Alloy Compd., 455, pp. 489-496; Chuntonov, K., Ivanov, A., Permikin, D., New lithium gas sorbents. II. A mathematical model of the evaporation process (2008) J. Alloy Compd., 456, pp. 187-193; Chuntonov, K., Setina, J., Ivanov, A., Permikin, D., New lithium gas sorbents. III. Experimental data on evaporation (2008) J. Alloy Compd., 460, pp. 357-362; Chuntonov, K., Ivanov, A., Permikin, D., New lithium gas sorbents. IV. Application to MEMS devices (2009) J. Alloy Compd., 471, pp. 211-216; Vuik, C., Some historical notes on the Stefan problem (1993) Nieuw Archief voor Wiskunde, 4e Serie, 11, pp. 157-167; Sarler, B., Stefan's work on solid-liquid phase changes (1995) Eng. Anal. Bound. Elem., 16, pp. 83-92; Wettlaufer, J.S., (2001) The Stefan problem: Polar exploration and the mathematics of moving boundaries, Festschrift 150, , Jahre Institut für Met und Geophysik, Univ. Wien, Styria, Graz; Crepeau, J., Josef Stefan: his life and legacy in the thermal sciences (2007) Exp. Thermal Fluid Sci., 31, pp. 780-795; Crepeau, J., Josef Stefan and his contributions to heat transfer (2008) Proc. ASME 2008 Heat Transfer Conf., HT2008, , August 10-14, Jacksonville, Florida, USA, paper 56073, 8p; Alexandrov, D.V., Ivanov, A.A., The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions (2009) J. Exp. Theor. Phys., 108 (5), pp. 821-829; Chuntonov, K.A., Mansurov, V.V., Intermetallic generators of alkali metal with a seal (1996) Vacuum, 47 (5), pp. 463-466; Mansurov, V.V., Chuntonov, K.A., Evaporation of a volatile component in vacuum-liquid-crystal system (1995) Zh. Fiz. Khim., 69 (4), pp. 727-730. , (in Russian); Barthel, J., Buhrig, E., Hein, K., Kuchar, L., (1983) Kristallisation aus Schmelzen, , VGI, Leipzig; Alexandrov, D.V., Toward a theory of evaporation processes in liquid-solid systems (2009) J. Exp. Theor. Phys., 109 (3), pp. 451-454; Alexandrov, D.V., Nonlinear dynamics of the liquid-crystal system during flying component evaporation (2009) Dokl. Phys., 54 (10), pp. 445-448
Correspondence Address Alexandrov, D.V.; Urals State University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg, 620083, Russian Federation; email: Dmitri.Alexandrov@usu.ru
CODEN IJHMA
Language of Original Document English
Abbreviated Source Title Int. J. Heat Mass Transf.
Source Scopus