Directional solidification of binary melts with a non-equilibrium mushy layer / Aseev D.L., Alexandrov D.V. // International Journal of Heat and Mass Transfer. - 2006. - V. 49, l. 25-26. - P. 4903-4909.

ISSN:
00179310
Type:
Article
Abstract:
When the melt or solution solidifies a constitutionally supercooled mushy layer is frequently formed ahead of the phase transition boundary. This leads to nucleation and growth mechanisms of newly born solid particles within a mush. The latter is responsible for the structures and properties appearing in the crystal. The process of solidification with a supercooled mushy layer is analytically described on the basis of two joint theories of directional and bulk crystallization. Such characteristics as the constitutional supercooling, the solid fraction and the radial density distribution function of solid particles in a mushy layer are found. The complex structure of the non-equilibrium mushy layer is completely recognized. © 2006 Elsevier Ltd. All rights reserved.
Author keywords:
Constitutional supercooling; Crystal growth; Mushy layer; Solidification
Index keywords:
Crystal growth; Density (specific gravity); Phase transitions; Solidification; Solutions; Supercooling; Bulk crystallization; Constitutional supercooling; Mushy layers; Binary alloys; Binary alloys; C
DOI:
10.1016/j.ijheatmasstransfer.2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750346192&doi=10.1016%2fj.ijheatmasstransfer.2006.05.046&partnerID=40&md5=52ee1a491ee5adc9942192a61273ad52
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750346192&doi=10.1016%2fj.ijheatmasstransfer.2006.05.046&partnerID=40&md5=52ee1a491ee5adc9942192a61273ad52
Affiliations Urals State University, Department of Mathematical Physics, Lenin Avenue 51, Ekaterinburg, 620083, Russian Federation
Author Keywords Constitutional supercooling; Crystal growth; Mushy layer; Solidification
References Huppert, E.H., Worster, M.G., Dynamic solidification of a binary melt (1985) Nature, 314, pp. 703-707; Worster, M.G., Solidification of an alloy from a cooled boundary (1986) J. Fluid Mech., 167, pp. 481-501; Parker, R.L., (1970) Crystal Growth Mechanisms: Energetics Kinetics and Transport Solid State Physics, 25. , Academic Press, New York and London; Carslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , Oxford University Press; Riley, D.S., Smith, F.T., Poots, G., The inward solidification of spheres and circular cylinders (1974) Int. J. Heat Mass Transfer, 17, pp. 1507-1516; Ivantsov, G.P., The diffusion supercooling in crystallization of a binary mixture (1951) Dokl. Akad. Nauk. SSSR, 81, pp. 179-182; Hills, R.N., Loper, D.E., Roberts, P.H., A thermodynamically consistent model of a mushy zone (1983) Quart. J. Mech. Appl. Mathematics, 36, pp. 505-539; Borisov, V.T., (1987) Theory of Two-Phase (Mushy) Zone of a Metal Ingot, , Metallurgiya Publishing House, Moscow; Kerr, R.C., Woods, A.W., Worster, M.G., Huppert, H.E., Solidification of an alloy cooled from above Part 1. Equilibrium growth (1990) J. Fluid Mech., 216, pp. 323-342; Alexandrov, D.V., Solidification with a quasiequilibrium mushy region: analytical solution of nonlinear model (2001) J. Cryst. Growth, 222, pp. 816-821; Alexandrov, D.V., Solidification with a quasiequilibrium two-phase zone (2001) Acta Mater., 49, pp. 759-764; Alexandrov, D.V., Aseev, D.L., One-dimensional solidification of an alloy with a mushy zone: thermodiffusion and temperature-dependent diffusivity (2005) J. Fluid Mech., 527, pp. 57-66; Buyevich, Yu.A., Alexandrov, D.V., Mansurov, V.V., (2001) Macrokinetics of Crystallization, , Begell House, New York, Wallingford; Buyevich, Yu.A., Alexandrov, D.V., (2005) Heat Transfer in Dispersions, , Begell House Inc., New York, Wallingford; Batchelor, G.K., Transport properties of two-phase materials with random structure (1974) Annu. Rev. Fluid Mech., 6, pp. 227-255; Scheil, E., Bemerkungen zur schichtkiistallbildung (1942) Z Metalld, 34, pp. 70-72; Flemings, M.C., (1974) Solidification Processing, , McGrow-Hill Book Company, New York; Buyevich, Yu.A., Mansurov, V.V., Kinetics of the intermediate stage of phase transition in batch crystallization (1990) J. Cryst. Growth, 104, pp. 861-867; Zeldovich, Ya.B., On the theory of formation of a new phase. Cavitation (1942) Zh. Eksperiment. Tekhnich. Fiz., 12, pp. 525-536; Frenkel, J., (1955) Kinetic Theory of Liquids, , Dover, New York; Chernov, A.A., Givargizov, Ye.I., Bagdasarov, Kh.S., Modern crystallography (1990) Crystallization Processes, 3. , Nauka Publishing House, Moscow; Nayfen, A.H., (1981) Introduction to perturbation techniques, , Wiley-Interscine Publication, New York, Chichester, Brisbane, Toronto; Fedoryuk, M.V., (1987) Asymptotics Integrals and Series, , Nauka Publishing House, Moscow; Polyanin, A.D., Zaytsev, V.F., (2001) Handbook of Exact Solutions for Ordinary Differential Equations, , CRC Press, Boca Raton New York
Correspondence Address Alexandrov, D.V.; Urals State University, Department of Mathematical Physics, Lenin Avenue 51, Ekaterinburg, 620083, Russian Federation; email: Dmitri.Alexandrov@usu.ru
CODEN IJHMA
Language of Original Document English
Abbreviated Source Title Int. J. Heat Mass Transf.
Source Scopus