A NUMERICAL SOLUTION FOR A CLASS OF TIME FRACTIONAL DIFFUSION EQUATIONSWITH DELAY / Pimenov Vladimir G.,Hendy Ahmed S. // INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE. - 2017. - V. 27, l. 3. - P. 477-488.

ISSN/EISSN:
1641-876X / нет данных
Type:
Article
Abstract:
This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(iota(2-alpha) + h(4)) in L infinity-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.
Author keywords:
fractional diffusion equation with delay; difference scheme; convergence analysis DIFFERENCE SCHEME; MODEL; DISPERSION; CALCULUS; SYSTEMS
DOI:
10.1515/amcs-2017-0033
Web of Science ID:
ISI:000411568700003
Соавторы в МНС:
Другие поля
Поле Значение
Month SEP
Publisher UNIV ZIELONA GORA PRESS
Address UL PODGORNA 50, ZIELONA GORA, 65-246, POLAND
Language English
Keywords-Plus DIFFERENCE SCHEME; MODEL; DISPERSION; CALCULUS; SYSTEMS
Research-Areas Automation \& Control Systems; Computer Science; Mathematics
Web-of-Science-Categories Automation \& Control Systems; Computer Science, Artificial Intelligence; Mathematics, Applied
Author-Email v.g.pimenov@urfu.ru ahmed.hendy@fsc.bu.edu.eg
ResearcherID-Numbers Pimenov, Vladimir/N-9894-2017
ORCID-Numbers Pimenov, Vladimir/0000-0002-4042-6079
Funding-Acknowledgement Government of Russian Federation {[}02.A03.21.0006]
Funding-Text This work was supported by the Government of Russian Federation under the grant no. 02.A03.21.0006.
Number-of-Cited-References 35
Usage-Count-Last-180-days 2
Usage-Count-Since-2013 2
Journal-ISO Int. J. Appl. Math. Comput. Sci.
Doc-Delivery-Number FH9WV