Domain patterning by electron beam of MgO doped lithium niobate covered by resist / Shur V.Y., Chezganov D.S., Akhmatkhanov A.R., Kuznetsov D.K. // Applied Physics Letters. - 2015. - V. 106, l. 23.

ISSN:
00036951
Type:
Article
Abstract:
Periodical domain structuring by focused electron beam irradiation of MgO-doped lithium niobate (MgOCLN) single crystalline plate covered by resist layer was studied both experimentally and by computer simulation. The dependences of domain size on the charge dose and distance between isolated domains were measured. It has been shown that the quality of periodical domain pattern depends on the thickness of resist layer and electron energy. The experimentally obtained periodic domain structures have been divided into four types. The irradiation parameters for the most uniform patterning were obtained experimentally. It was shown by computer simulation that the space charge slightly touching the crystal surface produced the maximum value of electric field at the resist/LN interface thus resulting in the best pattern quality. The obtained knowledge allowed us to optimize the poling process and to make the periodical domain patterns in 1-mm-thick wafers with an area up to 1 × 5mm2and a period of 6.89 μm for green light second harmonic generation. Spatial distribution of the efficiency of light frequency conversion confirmed the high homogeneity of the tailored domain patterns. © 2015 AIP Publishing LLC.
Author keywords:
Index keywords:
Electric fields; Electron beams; Electron energy levels; Irradiation; Niobium compounds; Nonlinear optics; Optical frequency conversion; Domain patterning; Electron energies; Focused electron beams; I
DOI:
10.1063/1.4922372
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931292158&doi=10.1063%2f1.4922372&partnerID=40&md5=a15dce8f796f738db6b321362f14cd02
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 232902
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931292158&doi=10.1063%2f1.4922372&partnerID=40&md5=a15dce8f796f738db6b321362f14cd02
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Funding Details 13-02-01391-a, RFBR, Russian Foundation for Basic Research; 14-02-31255-mol-a, RFBR, Russian Foundation for Basic Research; 15-32-21102-mol-a-ved, RFBR, Russian Foundation for Basic Research; RFMEFI59414X0011, Ministry of Education and Science of the Russian Federation
References Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Berger, V., (1998) Phys. Rev. Lett., 81, p. 4136; Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., Hanna, D.C., (2000) Phys. Rev. Lett., 84, p. 4345; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., (1993) Appl. Phys. Lett., 62, p. 435; Myers, L.E., Eckhardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102; Ross, G.W., Pollnau, M., Smith, P.G.R., Clarkson, W.A., Britton, P.E., Hanna, D.C., (1998) Opt. Lett., 23, p. 171; Ya. Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., (2000) Ferroelectrics, 236, p. 129; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, p. 201. , (Springer, Berlin); Ito, H., Takyu, C., Inaba, H., (1991) Electron. Lett., 27, p. 1221; Nutt, A., Gopalan, V., Gupta, M., (1992) Appl. Phys. Lett., 60, p. 2828; Fujimura, M., Kintaka, K., Suhara, T., Nishihara, H., (1993) J. Lightwave Technol., 11, p. 1360; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Couderc, V., Barthelemy, A., Martinez, A., Hauden, J., (2001) Appl. Opt., 40, p. 6056; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., (2003) J. Appl. Phys., 93, p. 9943; Glickman, Y., Winebrand, E., Arie, A., Rosenman, G., (2006) Appl. Phys. Lett., 88; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2006) Jpn. J. Appl. Phys., Part 2, 45, p. L399; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2006) J. Cryst. Growth, 292, p. 324; Kokhanchik, L.S., Palatnikov, M.N., Shcherbina, O.B., (2011) Phase Transitions, 84, p. 797; Mateos, L., Bausá, L.E., Ramírez, M.O., (2013) Appl. Phys. Lett., 102; Emelin, E.V., Il'In, A.I., Kokhanchik, L.S., (2013) Phys. Solid State, 55, p. 540; Kokhanchik, L.S., Volk, T.R., (2013) Appl. Phys. B, 110, p. 367; Mateos, L., Bausá, L.E., Ramírez, M.O., (2014) Opt. Mater. Express, 4, p. 1077; Ya. Shur, V., Chezganov, D.S., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., Smirnov, M.M., (2014) Appl. Phys. Lett., 105; Ya. Shur, V., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 87; Ya. Shur, V., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., (2013) Appl. Phys. Lett., 103; Ya. Shur, V., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., (2002) Ferroelectrics, 269, p. 195; Lobov, A.I., Ya. Shur, V., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., (2006) Ferroelectrics, 341, p. 109; Ya. Shur, V., (2005) In Nucleation Theory and Applications, p. 178. , edited by J. W. P. Schmelzer (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim); Ya. Shur, V., (2006) J. Mater. Sci., 41, p. 199; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Ya. Shur, V., (2015) Ferroelectrics, 476, p. 117; Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Rauvin, R., (2007) Scanning, 29, p. 92; Ya. Shur, V., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., (2012) J. Appl. Phys., 112; Ya. Shur, V., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., (2013) Appl. Phys. Lett., 103
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus