Formation of self-assembled domain structures in MgOSLT / Akhmatkhanov A.R., Chuvakova M.A., Baturin I.S., Shur V.Y. // Ferroelectrics. - 2015. - V. 476, l. 1. - P. 76-83.

ISSN:
00150193
Type:
Article
Abstract:
The formation of self-organized structures of submicron domains under application of the uniform electric field was studied in single crystals of magnesium doped near stoichiometric lithium tantalate grown by double crucible Czochralski method. It was shown that the period of the domain structure (about 1 m) appeared on Z- polar surface after polarization reversal was almost independent on the electric field. This fact confirms the self-organized nature of the phenomenon. The obtained dependence of the structure geometry on the switching conditions was discussed. The noticeable increase of the low-frequency dielectric permittivity was demonstrated in the samples with charged domain walls. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Charged domain walls; Domain kinetics; Lithium tantalate; Quasi-regular structures
Index keywords:
Electric fields; Lithium; Permittivity; Single crystals; Charged domain wall; Domain kinetics; Lithium tantalate; Low-frequency dielectric permittivities; Near-stoichiometric lithium tantalate; Regula
DOI:
10.1080/00150193.2015.998528
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161169&doi=10.1080%2f00150193.2015.998528&partnerID=40&md5=a07c94d2776d5c3f436f420679f901d3
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161169&doi=10.1080%2f00150193.2015.998528&partnerID=40&md5=a07c94d2776d5c3f436f420679f901d3
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords Charged domain walls; Domain kinetics; Lithium tantalate; Quasi-regular structures
References Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory Appl, pp. 178-214. , edited by Schmelzer JWP WILEY-VCH, Weinheim; Barth, J.V., Costantini, G., Kern, K., Engineering atomic and molecular nanostructures at surfaces (2005) Nature., 437, pp. 671-679; Shur, V.Ya., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics., 111, pp. 123-131; Shur, V.Ya., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkacheva, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Lett., 53, pp. 615-619; Shur, V.Ya., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics., 341, pp. 85-93; Shur, V.Ya., Gruverman, A.L., Ponomarev, N.Y., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics, 126, pp. 371-376; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics., 236, pp. 129-144; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Lobov, A.I., Shur, V.Ya., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO 3 and LiTaO 3 (2006) Ferroelectrics., 341, pp. 109-116; Canalias, C., Pasiskevicius, V., Mirrorless optical parametric oscillator (2007) Nat. Photonics., 1, pp. 459-462; Canalias, C., Pasiskevicius, V., Fokine, M., Laurell, F., Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO 4 (2005) Appl. Phys. Lett., 86, p. 181105; Su, H., Ruan, S., Guo, Y., Generation of mid-infrared wavelengths larger than 4.0 m in a mirrorless counterpropagating configuration (2006) J. Opt. Soc. Am. B., 23, p. 1626; Catalan, G., Seidel, J., Ramesh, R., Scott, J.F., Domain wall nanoelectronics (2012) Rev. Mod. Phys., 84, pp. 119-156; Seidel, J., Domain walls as nanoscale functional elements (2012) J. Phys. Chem. Lett., 3, pp. 2905-2909; Schröder, M., Haußmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv. Funct. Mater., 22, pp. 3936-3944; Shur, V.Ya., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl. Phys. Lett., 103, p. 102905; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77, pp. 3636-3638; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Ya., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors (2011) Phys. Rev. B., 83, p. 235313; Louchev, O.A., Yu, N.E., Kurimura, S., Kitamura, K., Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO 3 and LiTaO 3 crystals (2005) Appl. Phys. Lett., 87, p. 131101; Yu, N.E., Kurimura, S., Nomura, Y., Kitamura, K., Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate (2004) Jpn. J. Appl. Phys., 43, pp. L1265-L1267; Bruner, A., Eger, D., Ruschin, S., Second-harmonic generation of green light in periodically poled stoichiometric LiTaO 3 doped with MgO (2004) J. Appl. Phys., 96, p. 7445; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B., 81, pp. 729-751; Shur, V.Ya., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802; Furukawa, Y., Kitamura, K., Suzukia, E., Niwa, K., Stoichiometric LiTaO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system (1999) J. Cryst. Growth., 197, pp. 889-895; Kumaragurubaran, S., Takekawa, S., Nakamura, M., Kitamura, K., Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures (2006) J. Cryst. Growth., 292, pp. 332-336; Akhmatkhanov, A.R., Shur, V.Ya., Baturin, I.S., Zorikhin, D.V., Lukmanova, A.M., Zelenovskiy, P.S., Neradovskiy, M.M., Domain kinetics in lithium niobate single crystals with photoresist dielectric layer (2012) Ferroelectrics., 439, pp. 3-12; Shur, V.Ya., Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate (2014) Appl. Phys. Lett., 105, p. 152905; Ishizuki, H., Taira, T., Study on the field-poling dynamics in Mg-doped LiNbO 3and LiTaO 3 (2007) Nonlinear Opt. Mater. Fundam. Appl, p. 35. , Washington, D.C. OSA; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO 3 produced by vapor transport equilibration (2012) J. Appl. Phys., 111, p. 014101; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in ferroelectric crystals: Growth of the frozen domains (2012) J. Appl. Phys., 111, p. 124111; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Ya., Bourson, P., Kuznetsov, D.K., Raman visualization of micro-and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A., 99, pp. 741-744; Zelenovskiy, P.S., Shur, V.Ya., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics., 398, pp. 34-41; Shur, V.Ya., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics., 269, pp. 195-200; Shur, V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl. Phys. Lett., 103, p. 242903; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Mnushkina, I., Domain kinetics in congruent and stoichiometric lithium niobate (2002) Ferroelectrics., 269, pp. 189-194; Shur, V.Ya., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics., 340, pp. 3-16; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys. Solid State., 52, pp. 2147-2153; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur, V.Ya., Investigation of jerky domain wall motion in lithium niobate (2008) Ferroelectrics., 374, pp. 280-287; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in stoichiometric LiTaO 3 crystals produced by vapor transport equilibration (2012) Ferroelectrics., 426, pp. 142-151
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus