Increase and relaxation of abnormal conduction current in lithium niobate crystals with charged domain walls / Esin A.A., Akhmatkhanov A.R., Baturin I.S., Shur V.Y. // Ferroelectrics. - 2015. - V. 476, l. 1. - P. 94-104.

ISSN:
00150193
Type:
Article
Abstract:
The increase and relaxation of the conduction current caused by formation of intergrown charged domain walls (CDW) during polarization reversal have been studied in stoichiometric lithium niobate. The 103-104 times increase of the conduction current was revealed in the temperature range 100-200°C. The current, measured during polarization reversal, consists of the conventional switching current and the conduction current along CDW dominating for T>200°C. The model based on the complex conductivity pathway along CDW was proposed. The current data were analyzed in terms of the Kolmogorov-Avrami model taking into account the input of the CDW conductivity. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Bulk conductivity; Kolmogorov-Avrami model; Polarization reversal; Stoichiometric lithium niobate
Index keywords:
Charge density waves; Lithium; Niobium compounds; Polarization; Avrami models; Bulk conductivities; Charged domain wall; Complex conductivity; Conduction current; Lithium niobate crystal; Polarization
DOI:
10.1080/00150193.2015.998580
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161360&doi=10.1080%2f00150193.2015.998580&partnerID=40&md5=202766f05f786a33fd1e8bc8384bc382
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161360&doi=10.1080%2f00150193.2015.998580&partnerID=40&md5=202766f05f786a33fd1e8bc8384bc382
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Author Keywords Bulk conductivity; Kolmogorov-Avrami model; Polarization reversal; Stoichiometric lithium niobate
Funding Details 13-02-01391-a, RFBR, Ministry of Education and Science; 14-02-90447 Ukr-a, RFBR, Ministry of Education and Science; 14.594.21.0011, Ministry of Education and Science
References Vul, B.M., Guro, G.M., Ivanchik, I.I., Encountering domains in ferroelectrics (1973) Ferroelectrics, 6, pp. 29-31; Selyuk, B.V., Charged domain boundaries in ferroelectric crystals (1973) Ferroelectrics, 6, pp. 37-40; Guro, G.M., Ivanchik, I.I., Kovtonuk, N.F., Semiconductor properties of barium titanate (1968) Sov. Phys. Solid State., 10, pp. 100-105; Guro, G.I., Ivanchik, I.I., Kovtoniuk, N.F., C-domain BaTiO 3 crystal in a short-circuited capacitor (1970) Sov. Phys. Solid State, 11, pp. 1574-1589; Adonin, A.A., Grekov, A.A., Encountering polarization in SbSI (1974) Sov. Phys. Solid State., 16, pp. 364-366; Grekov, A.A., Adonin, A.A., Protsenko, N.P., Encountering domains in SbSl (1976) Ferroelectrics, 13, pp. 483-485; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat. Mater., 8, pp. 229-234; Seidel, J., Domain walls as nanoscale functional elements (2012) J. Phys. Chem. Lett., 3, pp. 2905-2909; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Ya., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors (2011) Phys. Rev. B., 83, p. 235313; Maksymovych, P., Morozovska, A.N., Yu, P., Eliseev, E.A., Chu, Y.-H., Ramesh, R., Baddorf, A.P., Kalinin, S.V., Tunable metallic conductance in ferroelectric nanodomains (2012) Nano Lett., 12, pp. 209-213; Sluka, T., Tagantsev, A.K., Bednyakov, P., Setter, N., Free-electron gas at charged domain walls in insulating BaTiO 3 (2013) Nat. Commun., 4, p. 1808; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in Mg-doped LiNbO 3 (2004) J. Appl. Phys., 96, pp. 6585-6590; Schröder, M., Haußmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv. Funct. Mater., 22, pp. 3936-3944; Cho, Y., Electrical conduction in nanodomains in congruent lithium tantalate single crystal (2014) Appl. Phys. Lett., 104, p. 042905; Shur, V.Ya., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl. Phys. Lett., 103, p. 102905; Farokhipoor, S., Noheda, B., Conduction through 71° domain walls in BiFeO 3 thin films (2011) Phys. Rev. Lett., 107, p. 127601; Schaab, J., Krug, I.P., Nickel, F., Gottlob, D.M., Doʇanay, H., Cano, A., Hentschel, M., Meier, D., Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy (2014) Appl. Phys. Lett., 104, p. 232904; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Shur, V.Ya., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Zelenovskiy, P.S., Shur, V.Ya., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics, 398, pp. 34-41; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B., 81, pp. 729-751; Shur, V.Ya., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys. Solid State., 52, pp. 2147-2153; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Ya., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, pp. 145-157; Shur, V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl. Phys. Lett., 103, p. 242903; Schröder, M., Chen, X., Haußmann, A., Thiessen, A., Poppe, J., Bonnell, D.A., Eng, L.M., Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals (2014) Mater. Res. Express., 1, p. 035012; Kolmogorov, A.N., To the stohastic theory of metals crystallization (1937) Izv. Acad. Nauk USSR; Ser. Math., 3, pp. 355-359; Avrami, M., Kinetics of phase change. i General theory (1939) J. Chem. Phys., 7, pp. 1103-1112; Ishibashi, Y., Takagi, Y., Note on Ferroelectric Domain Switching (1971) J. Phys. Soc. Japan., 31, pp. 506-510; Shur, V.Ya., Rumyantsev, E.L., Kinetics of ferroelectric domain structure during switching: Theory and experiment (1994) Ferroelectrics, 151, pp. 171-180; Shur, V.Ya., Rumyantsev, E.L., Makarov, S.D., Volegov, V.V., How to extract information about domain kinetics in thin ferroelectric films from switching transient current data (1994) Integr. Ferroelectr., 5, pp. 293-301; Shur, V.Ya., Rumyantsev, E.L., Crystal growth and domain structure evolution (1993) Ferroelectrics, 142, pp. 1-7; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77, pp. 3636-3638; Merz, W., The electric and optical behavior of BaTiO 3 single-domain crystals (1949) Phys. Rev., 76, pp. 1221-1225; Shur, V.Ya., Rumyantsev, E.L., Shishkina, E.V., Analysis of the switching current data in uniaxial ferroelectrics (2013) Ferroelectrics, 443, pp. 105-115; Shur, V.Ya., Rumyantsev, E.L., Makarov, S.D., Subbotin, A.L., Volegov, V.V., Transient current during switching in increasing electric field as a basis for a new testing method (1995) Integr. Ferroelectr., 10, pp. 223-230
Correspondence Address Esin, A.A.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus