Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate / Shur V.Y., Akhmatkhanov A.R., Chuvakova M.A., Baturin I.S. // Applied Physics Letters. - 2014. - V. 105, l. 15.

ISSN:
00036951
Type:
Article
Abstract:
The polarization reversal process has been studied in 1 mol. % MgO doped stoichiometric lithium tantalate (LT) single crystal. The revealed stages of domain structure evolution represent (1) continuous nucleation and growth of isolated hexagonal domains with walls oriented along Y directions and (2) continuous motion of the plane domain walls stimulated by merging with isolated domains. The activation field dependence of the switching time has been revealed. The coercive field for quasi-static switching is about 150 V/mm. The bulk screening process has been analyzed. The main parameters of the switching process have been compared with other representatives of LT family. © 2014 AIP Publishing LLC.
Author keywords:
Index keywords:
Domain kinetics; Polarization reversals; Stoichiometric lithium tantalates
DOI:
10.1063/1.4898348
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908053261&doi=10.1063%2f1.4898348&partnerID=40&md5=dc13963b18f42a68c880284b6c1ebca5
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 152905
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908053261&doi=10.1063%2f1.4898348&partnerID=40&md5=dc13963b18f42a68c880284b6c1ebca5
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
References Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., (1962) Phys. Rev., 127, p. 1918; Hum, D.S., Fejer, M.M., (2007) C. R. Phys., 8, p. 180; Alexandrovski, A.L., Foulon, G., Myers, L.E., Route, R.K., Fejer, M.M., (1999) Optoelectron.'99 - Integr. Optoelectron. Devices, pp. 44-51. , edited by K. I. Schaffers and L. E. Myers (International Society for Optics and Photonics); Furukawa, Y., Kitamura, K., Alexandrovski, A., Route, R.K., Fejer, M.M., Foulon, G., (2001) Appl. Phys. Lett., 78, p. 1970; Kuroda, A., Kurimura, S., Uesu, Y., (1996) Appl. Phys. Lett., 69, p. 1565; Kitamura, K., Yamamoto, J.K., Iyi, N., Kirnura, S., Hayashi, T., (1992) J. Cryst. Growth, 116, p. 327; Furukawa, Y., Sato, M., Kitamura, K., Nitanda, F., (1993) J. Cryst. Growth, 128, p. 909; Louchev, O.A., Yu, N.E., Kurimura, S., Kitamura, K., (2005) Appl. Phys. Lett., 87, p. 131101; Yu, N.E., Kurimura, S., Nomura, Y., Kitamura, K., (2004) Jpn. J. Appl. Phys., Part 2, 43, p. L1265; Ishizuki, H., Taira, T., (2008) Opt. Express, 16, p. 16963; Ishizuki, H., Taira, T., (2012) Opt. Express, 20, p. 20002; Furukawa, Y., Kitamura, K., Suzukia, E., Niwa, K., (1999) J. Cryst. Growth, 197, p. 889; Bruner, A., Eger, D., Ruschin, S., (2004) J. Appl. Phys., 96, p. 7445; Katz, M., Route, R.K., Hum, D.S., Parameswaran, K.R., Miller, G.D., Fejer, M.M., (2004) Opt. Lett., 29, p. 1775; Hum, D.S., Route, R.K., Miller, G.D., Kondilenko, V., Alexandrovski, A., Huang, J., Urbanek, K., Fejer, M.M., (2007) J. Appl. Phys., 101, p. 93108; Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T.E., (1998) Appl. Phys. Lett., 73, p. 3073; Shur V.Ya., (2013) Ferroelectrics, 443, p. 71; Shur V.Ya., (2006) Ferroelectrics, 340, p. 3; Ishibashi, Y., Takagi, Y., (1971) J. Phys. Soc. Jpn., 31, p. 506; Shur V.Ya., Rumyantsev, E.L., Makarov, S.D., (1998) J. Appl. Phys., 84, p. 445; Shur V.Ya., Rumyantsev, E.L., Makarov, S.D., Volegov, V.V., (1994) Integr. Ferroelectr., 5, p. 293; Kolmogorov, A.N., (1937) Izv. Acad. Nauk USSR: Ser. Math., 3, p. 355; Avrami, M., (1939) J. Chem. Phys., 7, p. 1103; Shur V.Ya., Rumyantsev, E.L., (1994) Ferroelectrics, 151, p. 171; Kumaragurubaran, S., Takekawa, S., Nakamura, M., Kitamura, K., (2006) J. Cryst. Growth, 292, p. 332; Merz, W., (1954) Phys. Rev., 95, p. 690; Akhmatkhanov, A.R., Shur V.Ya., Baturin, I.S., Zorikhin, D.V., Lukmanova, A.M., Zelenovskiy, P.S., Neradovskiy, M.M., (2012) Ferroelectrics, 439, p. 3; Shur V.Ya., Akhmatkhanov, A.R., Baturin, I.S., (2012) J. Appl. Phys., 111, p. 124111; Shur V.Ya., Akhmatkhanov, A.R., Baturin, I.S., (2012) Ferroelectrics, 426, p. 142; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., (1993) Appl. Phys. Lett., 62, p. 435; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102; Ross, G.W., Pollnau, M., Smith, P.G.R., Clarkson, W.A., Britton, P.E., Hanna, D.C., (1998) Opt. Lett., 23, p. 171; Shur V.Ya., Rumyantsev, E.L., Nicolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., (2001) Ferroelectrics, 257, p. 191; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., (2004) J. Appl. Phys., 96, p. 6585; Ishizuki, H., Shoji, I., Taira, T., (2003) Appl. Phys. Lett., 82, p. 4062; Shur V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., (2010) Phys. Solid State, 52, p. 2147; Baturin, I.S., Akhmatkhanov, A.R., Shur V.Ya., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., (2008) Ferroelectrics, 374, p. 1; Shur V.Ya., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., (2001) Appl. Phys. Lett., 79, p. 3146; Gopalan, V., Mitchell, T., (1998) J. Appl. Phys., 83, p. 941; Shur V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., (2013) Appl. Phys. Lett., 103, p. 242903; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur V.Ya., (2008) Ferroelectrics, 374, p. 136; Shur V.Ya., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., (2002) Phys. Solid State, 44, p. 2151; Shur V.Ya., Rumyantsev, E.L., (1993) Ferroelectrics, 142, p. 1; Shur V.Ya., (2005) Nucleation Theory and Applications, pp. 178-214. , edited by J. W. P. Schmelzer (Wiley-VCH, Weinheim); Shur V.Ya., (2006) J. Mater. Sci., 41, p. 199; Orihara, H., Hashimoto, S., Ishibashi, Y., (1994) J. Phys. Soc. Jpn., 63, p. 1031; Hashimoto, S., Orihara, H., Ishibashi, Y., (1994) J. Phys. Soc. Jpn., 63, p. 1601; Ishizuki, H., Taira, T., (2007) Nonlinear Optics: Materials, Fundamentals, and Applications, p. WE35. , in (OSA, Washington, DC); Shur V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., (2012) J. Appl. Phys., 111, p. 014101; Shur V.Ya., Akhmatkhanov, A.R., Chuvakova, M.A., Vaskina, E.M., Polarization reversal process in MgO doped congruent lithium tantalate single crystals (2014) Ferroelectrics, , (submitted); Kim, S., Gopalan, V., Kitamura, K., Furukawa, Y., (2001) J. Appl. Phys., 90, p. 2949
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus