Fatigue effect in ferroelectric crystals: Growth of the frozen domains / Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Journal of Applied Physics. - 2012. - V. 111, l. 12.

ISSN:
00218979
Type:
Article
Abstract:
The model of the fatigue effect during cyclic switching caused by growth of the frozen domain area with charged domain walls has been proposed. It was claimed on the basis of the previous experimental results that for switching in increasing field the frozen domain area started to grow at the given sub-threshold field value and stopped at the threshold field. The influence of the shape and frequency of the field pulses used for cyclic switching has been considered. The uniaxial ferroelectric stoichiometric lithium tantalate single crystals produced by vapor transport equilibration with record low value of coercive field have been chosen as a model material for experimental verification of the model. The formation of the charged domain walls as a result of cyclic switching has been revealed by analysis of the domain images obtained by optical and Raman confocal microscopy. It has been shown that the fatigue degree is equal to the fraction of the frozen domain area. The experimental dependence of the switched charge on the cycle number has been successfully fitted by modified Kolmogorov-Avrami formula. The experimentally observed frequency independence of fatigue profile for rectangular pulses and frequency dependence for triangular pulses has been explained by proposed model. © 2012 American Institute of Physics.
Author keywords:
Index keywords:
Charged domain wall; Coercive field; Cycle number; Experimental verification; Fatigue effects; Ferroelectric crystal; Field pulse; Field values; Frequency dependence; Model materials; Rectangular puls
DOI:
10.1063/1.4729834
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863522324&doi=10.1063%2f1.4729834&partnerID=40&md5=4faecf4435dfc7326b7898f0c1c14750
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 124111
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863522324&doi=10.1063%2f1.4729834&partnerID=40&md5=4faecf4435dfc7326b7898f0c1c14750
Affiliations Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg, Russian Federation; Labfer Ltd, 620014 Ekaterinburg, Russian Federation
References Lupascu, D.C., (2004) Fatigue in Ferroelectric Ceramics and Related Issues, p. 225. , (Springer, Berlin); Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., (2001) J. Appl. Phys., 90, p. 1387. , 10.1063/1.1381542; Lou, X.J., (2009) J. Appl. Phys., 105, p. 024101. , 10.1063/1.3056603; Larsen, P.K., Dormans, G.J.M., Taylor, D.J., Van Veldhoven, P.J., (1994) J. Appl. Phys., 76, p. 2405. , 10.1063/1.357589; Lee, J.J., Thio, C.L., Desu, S.B., (1995) J. Appl. Phys., 78, p. 5073. , 10.1063/1.359737; Bratkovsky, A., Levanyuk, A., (2000) Phys. Rev. Lett., 84, p. 3177. , 10.1103/PhysRevLett.84.3177; Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Schwartz, R.W., Clews, P.J., McIntyre, D.C., (1995) J. Appl. Phys., 77, p. 6695. , 10.1063/1.359083; Colla, E.L., Tagantsev, A.K., Taylor, D.V., Kholkin, A.L., (1997) Integr. Ferroelectr., 18, p. 19. , 10.1080/10584589708221682; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., (2010) Phys. Solid State, 52, p. 2147. , 10.1134/S1063783410100215; Baturin, I.S., Akhmatkhanov, A.R., Ya. Shur, V., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., (2008) Ferroelectrics, 374, p. 1. , 10.1080/00150190802418860; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Baturin, I.S., Ya. Shur, V., Rumyantsev, E.L., Baturin, I.S., (2001) J. Appl. Phys., 90, p. 6312. , 10.1063/1.1418008, Phys. Solid State 44, 2145 (2002). 10.1134/1.1521471; Dawber, M., Scott, J.F., (2000) Appl. Phys. Lett., 76, p. 1060. , 10.1063/1.125938; Yoo, I.K., Desu, S.B., (1992) Phys. Status Solidi A, 133, p. 565. , 10.1002/pssa.2211330242; Robels, U., Calderwood, J.H., Arlt, G., (1995) J. Appl. Phys., 77, p. 4002. , 10.1063/1.359511; Le Rhun, G., Poullain, G., Bouregba, R., (2004) J. Appl. Phys., 96, p. 3876. , 10.1063/1.1784612; Majumder, S.B., Mohapatra, Y.N., Agrawal, D.C., (1997) Appl. Phys. Lett., 70, p. 138. , 10.1063/1.119287; Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., Setter, N., No, K., (1998) Appl. Phys. Lett., 72, p. 2763. , 10.1063/1.121083; Gruverman, A., Auciello, O., Tokumoto, H., (1996) Appl. Phys. Lett., 69, p. 3191. , 10.1063/1.117957; Campbell, D.S., (1962) Philos. Mag., 7, p. 1157. , 10.1080/14786436208209115; Kudzin, A.Yu., Panchenko, T.V., Yudin, S.P., (1975) Phys. Solid State, 16, p. 1589; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., (2000) Appl. Phys. Lett., 77, p. 3636. , 10.1063/1.1329327; Ishibashi, Y., Takagi, Y., (1971) J. Phys. Soc. Jpn., 31, p. 506. , 10.1143/JPSJ.31.506; Shur, V.Ya., Rumyantsev, E.L., (1993) Ferroelectrics, 142, p. 1. , 10.1080/00150199308237878; Shur, V.Ya., Rumyantsev, E.L., (1994) Ferroelectrics, 151, p. 171. , 10.1080/00150199408244739; Kolmogorov, A.N., (1937) Izv. Akad. Nauk SSSR, Ser. Mat., 3, p. 355; Avrami, M., (1939) J. Chem. Phys., 8, p. 1103. , 10.1063/1.1750380; Duiker, H., Beale, P., (1990) Phys. Rev. B, 41, pp. 490-495. , 10.1103/PhysRevB.41.490; Orihara, H., Ishibashi, Y., (1992) J. Phys. Soc. Jpn., 61, pp. 1919-1925. , 10.1143/JPSJ.61.1919; Shur, V., Rumyantsev, E., Makarov, S., (1998) J. Appl. Phys., 84, p. 445. , 10.1063/1.368047; Abe, R., (1959) J. Phys. Soc. Jpn., 14, p. 633. , 10.1143/JPSJ.14.633; Shur, V.Ya., Rumyantsev, E.L., (1997) Ferroelectrics, 191, p. 319. , 10.1080/00150199708015657; Soergel, E., (2005) Appl. Phys. B, 81, p. 729. , 10.1007/s00340-005-1989-9; Tian, L., Gopalan, V., Galambos, L., (2004) Appl. Phys. Lett., 85, p. 4445. , 10.1063/1.1814436; Hum, D.S., Route, R.K., Miller, G.D., Kondilenko, V., Alexandrovski, A., Huang, J., Urbanek, K., Fejer, M.M., (2007) J. Appl. Phys., 101, p. 93108. , 10.1063/1.2723867; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., (2012) J. Appl. Phys., 111, p. 014101. , 10.1063/1.3673601; Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549. , 10.1142/S021886359700040X; Bordui, P.F., Norwood, R.G., Jundt, D.H., Fejer, M.M., (1992) J. Appl. Phys., 71, p. 875. , 10.1063/1.351308; Zelenovskiy, P.S., Shur, V.Ya., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., (2010) Ferroelectrics, 398, p. 34. , 10.1080/00150193.2010.489810; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110, p. 052013. , 10.1063/1.3623778; Jona, F., Shirane, G., (1962) Ferroelectric Crystals, p. 402. , (Pergamon, Oxford); Barfoot, J.C., Taylor, G.W., (1979) Polar Dielectrics and Their Applications, p. 465. , (MacMillan, London); Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Ya. Shur, V., (2008) Ferroelectrics, 374, p. 136. , 10.1080/00150190802427531; Grossmann, M., Bolten, D., Lohse, O., Boettger, U., Waser, R., Tiedke, S., (2000) Appl. Phys. Lett., 77, p. 1894. , 10.1063/1.1290154; Chae, B.G., Park, C.H., Yang, Y.S., Jang, M.S., (1999) Appl. Phys. Lett., 75, p. 2135. , 10.1063/1.124941
Correspondence Address Shur, V.Ya.; Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus