Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers / Shur V.Y., Baturin I.S., Mingaliev E.A., Zorikhin D.V., Udalov A.R., Greshnyakov E.D. // Applied Physics Letters. - 2015. - V. 106, l. 5.

ISSN:
00036951
Type:
Article
Abstract:
The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated. © 2015 AIP Publishing LLC.
Author keywords:
Index keywords:
Actuators; Hysteresis; Lithium; Niobium compounds; Piezoelectricity; Temperature distribution; Bending displacement; Deflection amplitude; Lithium niobate wafers; Piezoelectric bimorph actuators; Piez
DOI:
10.1063/1.4907679
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923902107&doi=10.1063%2f1.4907679&partnerID=40&md5=8c125f5e134c4dd37790259965fbf98e
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 053116
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923902107&doi=10.1063%2f1.4907679&partnerID=40&md5=8c125f5e134c4dd37790259965fbf98e
Affiliations Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., Ekaterinburg, Russian Federation
References Uchino, K., (1998) Acta Mater., 46, p. 3745; Morita, T., Niino, T., Asama, H., Tashiro, H., (2001) Jpn. J. Appl. Phys., Part 1, 40, p. 3801; Twiefel, J., Morita, T., (2011) Sens. Actuators, A, 166, p. 78; Nakamura, K., Ando, H., Shimizu, H., (1987) Jpn. J. Appl. Phys., Part 1, 26 (S2), p. 198; Matsunami, G., Kawamata, A., Hosaka, H., Morita, T., (2008) Sens. Actuators, A, 144, p. 337; Uchino, K., (2008) J. Electroceram., 20, p. 301; Nakamura, K., Kurosawa, Y., Ishikawa, K., (1996) Appl. Phys. Lett., 68, p. 2799; Takenaka, T., Nagata, H., Hiruma, Y., (2008) Jpn. J. Appl. Phys., Part 1, 47, p. 3787; Yu, F., Zhang, S., Zhao, X., Yuan, D., Qin, L., Wang, Q., Shrout, T.R., (2011) J. Appl. Phys., 109; Bohm, J., Heimann, R.B., Hengst, M., Roewer, R., Schindler, J., (1999) J. Cryst. Growth, 204, p. 128; Nakamura, K., Shimizu, H., (1989) Ferroelectrics, 93, p. 211; Xiao, W., Huan, J., Liu, G., Shi, H., Dong, S., (2013) Appl. Phys. Lett., 102; Shur, V.Y., (2010) Advanced Piezoelectric Materials: Science and Technology, pp. 204-238. , edited by K. Uchino (Woodhead Publishing Ltd.); Kugel, V.D., Rosenman, G., Shur, D., (1995) J. Appl. Phys., 78, p. 5592; Yue, W., Yi-Jian, J., (2003) Opt. Mater., 23, p. 403; Smith, R.T., Welsh, F.S., (1971) J. Appl. Phys., 42, p. 2219; Nakamura, K., Ando, H., Shimizu, H., (1987) Appl. Phys. Lett., 50, p. 1413; Antipov, V.V., Bykov, A.S., Malinkovich, M.D., Parkhomenko, Y.N., (2008) Ferroelectrics, 374, p. 65; Haisma, J., Spierings, B.A., Biermann, U.K., Van Gorkum, A.A., (1994) Appl. Opt., 33, p. 1154; Cunningham, S.J., Kupnik, M., (2011) MEMS Materials and Processes Handbook, pp. 817-877. , edited by R. Ghodssi and P. Lin (Springer, USA); Kim, B.-J., Kim, C.-S., Kim, D.-J., Lim, H.-H., Park, S.-K., Cha, M.-S., Kim, K.-J., (2010) J. Opt. Soc. Korea, 14, p. 420; Gawith, C.B., Shepherd, D.P., Abernethy, J.A., Hanna, D.C., Ross, G.W., Smith, P.G., (1999) Opt. Lett., 24, p. 481; Ballman, A.A., (1965) J. Am. Ceram. Soc., 48, p. 112; Shur, V.Y., Mingaliev, E.A., Lebedev, V.A., Kuznetsov, D.K., Fursov, D.V., (2013) J. Appl. Phys., 113; Wang, Q.-M., Cross, L.E., (1998) Ferroelectrics, 215, p. 187; Yamada, T., Niizeki, N., Toyoda, H., (1967) Jpn. J. Appl. Phys., Part 1, 6, p. 151; Sweeney, K.L., (1983) Appl. Phys. Lett., 43, p. 336; Baba, A., Searfass, C.T., Tittmann, B.R., (2010) Appl. Phys. Lett., 97
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus