Deaging in Gd 2(MoO 4) 3 by cyclic motion of a single planar domain wall / Shur V.Ya., Nikolaeva E.V., Shishkin E.I., Baturin I.S., Shur A.G., Utschig T., Schlegel T., Lupascu D.C. // Journal of Applied Physics. - 2005. - V. 98, l. 7.

ISSN:
00218979
Type:
Article
Abstract:
The motion of a single planar 180° domain wall was studied in single-crystalline gadolinium molybdate, Gd2 (Mo O4) 3. The switching current and the instantaneous wall positions were recorded using polarized light in an optical microscope and subsequent image processing. A pronounced deaging (wake-up) effect is observed represented by an increase of domain-wall shift during cyclic switching at constant voltage amplitude. The experimental data are compared to computer simulations taking into account the kinetic imprint effect under ac cycling. The latter is the change of the spatial distribution of the internal bias field during cycling. It is shown that deaging (wake-up) arises for aged (screened) initial states. After long enough cycling, the spatial distribution of the internal bias field becomes steady state and the wall motion becomes reproducible in all its details. The final distribution of the internal bias field does not depend on the initial state of the sample. The activation energies for deaging and aging are equal within the experimental uncertainty and thus very likely stem from the same micromechanism. © 2005 American Institute of Physics.
Author keywords:
Index keywords:
Deaging; Gadolinium molybdate; Spatial distributions; Switching currents; Activation energy; Computer simulation; Electric currents; Electric potential; Gadolinium compounds; Image processing; Light p
DOI:
10.1063/1.2077846
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144514374&doi=10.1063%2f1.2077846&partnerID=40&md5=959bd35cb468c757fe794815610c0451
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 074106
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144514374&doi=10.1063%2f1.2077846&partnerID=40&md5=959bd35cb468c757fe794815610c0451
Affiliations Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation; Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt, Germany
References Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., (1996) Opt. Lett., 21, p. 591; Jonker, G.H., (1972) J. Am. Ceram. Soc., 55, p. 57; Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Schneller, T., Waser, R., (2002) J. Appl. Phys., 92, p. 2680; Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Waser, R., (2002) J. Appl. Phys., 92, p. 2688; Unruh, H.-G., Müser, H.E., (1962) Z. Angew. Math. Phys., 14, p. 121; Lupascu, D.C., Nuffer, J., Rödel, J., (1999) Ferroelectrics, 222, p. 249; Shur, V.Ya., (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, pp. 153-192. , edited by C. P.de Araujo, J. F.Scott, and G. W.Taylor (Gordon and Breach, Amsterdam; Shur, V.Ya., (1998) Phase Transitions, 65, p. 49; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Baturin, I.S., (2001) J. Appl. Phys., 90, p. 6312; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Baturin, I.S., (2002) Phys. Solid State, 44, p. 2145; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Baturin, I.S., Ozgul, M., Randall, C.A., (2001) Integr. Ferroelectr., 33, p. 117; Shur, V.Ya., Rumyantsev, E.L., Kuminov, V.P., Subbotin, A.L., Nikolaeva, E.V., (1999) Phys. Solid State, 41, p. 112; Shur, V.Ya., Nikolaeva, E.V., Rumyantsev, E.L., Shishkin, E.I., Subbotin, A.L., Kozhevnikov, V.L., (1999) Ferroelectrics, 222, p. 323; Flippen, R.B., (1975) J. Appl. Phys., 46, p. 1068; Shur, V.Ya., Gruverman, A.L., Kuminov, V.P., Tonkachyova, N.A., (1990) Ferroelectrics, 111, p. 197; Shur, V.Ya., Popov, Yu.A., Korovina, N.V., (1984) Sov. Phys. Solid State, 26, p. 471; Lupascu, D.C., Genenko, Y., Balke, N., J. Am. Ceram. Soc.; Kumada, A., (1969) Phys. Lett., 30, p. 186; Bunkin, A.Yu., Nishnevitch, M.B., (1995) J. Cryst. Growth, 156, p. 454; Fridkin, V.M., Ferroelectric Semiconductors, , Consultants Bureau, New York, 1980); Dawber, M., Sinnamon, L.J., Scott, J.F., Gregg, J.M., (2002) Ferroelectrics, 268, p. 35; Bratkovsky, A.M., Levanyuk, A.P., (2000) Phys. Rev. Lett., 84, p. 3177; Robels, U., Arlt, G., (1993) J. Appl. Phys., 73, p. 3454; Lambeck, P.V., Jonker, G.H., (1986) J. Phys. Chem. Solids, 47, p. 453; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., (2001) J. Appl. Phys., 90, p. 1387; Meleshina, V.A., Indenbom, V.L., Bagdasarov, Kh.S., Polkhovskaya, T.M., (1973) Kristallografiya, 18, p. 1218
Correspondence Address Shur, V.Ya.; Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus