Algorithms for solving inverse geophysical problems on parallel computing systems / Akimova E.N., Belousov D.V., Misilov V.E. // Numerical Analysis and Applications. - 2013. - V. 6, l. 2. - P. 98-110.

ISSN:
19954239
Type:
Article
Abstract:
For solving inverse gravimetry problems, efficient stable parallel algorithms based on iterative gradient methods are proposed. For solving systems of linear algebraic equations with block-tridiagonal matrices arising in geoelectrics problems, a parallel matrix sweep algorithm, a square root method, and a conjugate gradient method with preconditioner are proposed. The algorithms are implemented numerically on a parallel computing system of the Institute of Mathematics and Mechanics (PCS-IMM), NVIDIA graphics processors, and an Intel multi-core CPU with some new computing technologies. The parallel algorithms are incorporated into a system of remote computations entitled "Specialized Web-Portal for Solving Geophysical Problems on Multiprocessor Computers." Some problems with "quasi-model" and real data are solved. © 2013 Pleiades Publishing, Ltd.
Author keywords:
direct and iterative methods; inverse gravimetry problems; parallel algorithms; parallel computing systems
Index keywords:
Computing technology; Direct and iterative method; inverse gravimetry problems; Iterative gradients; Multiprocessor computers; Parallel computing system; Remote computations; Systems of linear algebra
DOI:
10.1134/S199542391302002X
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878843042&doi=10.1134%2fS199542391302002X&partnerID=40&md5=72c3c39ad12649dd49760e458881851f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878843042&doi=10.1134%2fS199542391302002X&partnerID=40&md5=72c3c39ad12649dd49760e458881851f
Affiliations Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990, Russian Federation; Ural Federal University, ul. Mira 19, Yekaterinburg, 620002, Russian Federation
Author Keywords direct and iterative methods; inverse gravimetry problems; parallel algorithms; parallel computing systems
References Martyshko, P.S., Koksharov, D.E., Determination of Density in a LayeredMedium by Gravitational Data (2005) Geofiz. Zh., 27 (4), pp. 678-684; Numerov, B.V., Interpretation of Gravitational Observations in the Case of One Contact Surface (1930) Dokl. Akad. Nauk SSSR, pp. 569-574; Vasin, V.V., Eremin, I.I., (2005) Operatory I Iteratsionnye Protsessy Feierovskogo Tipa. Teoriya I Prilozheniya (Operators and Iterative Processes of Fejer Type: Theory and Applications), , Yekaterinburg: UrB RAS; Dashevskii, Y.A., Surodina, I.V., Epov, M.I., Quasi-Three-Dimensional Mathematical Simulation of Diagrams of Nonaxisymmetric Direct Current Sondes in AnisotropicMedia (2002) Sib. Zh. Ind.Mat., 5 (311), pp. 76-91; Martyshko, P.S., Prutkin, I.L., Technology of Separation of Gravitational Field Sources in Depth (2003) Geofiz. Zh., 25 (3), pp. 159-168; Voevodin, V.V., (2012) Tekhnologii Parallel'nogo Programmirovaniya (Parallel Programming Technologies), , http://parallel.ru/, URL, (download date: 06. 02. 2012); Berillo, A., (2012) NVIDIA CUDA-Negraficheskie Vychisleniya Na Graficheskikh Protsessorakh (NVIDIA CUDA-Nongraphic Calculations on Graphic Processors), , http://www.ixbt.com/video3/cuda-1.shtml, URL, (download date: 06. 02. 2012); Akimova, E.N., Belousov, D.V., Parallelization of Algorithms for Solving the Linear Inverse Problem of Gravimetry on PCS-1000 and Graphic Processors (2010) Vestnik NNGU, Pt. 1, pp. 193-200; Bakushinsky, A., Goncharsky, A., (1994) Ill-Posed Problems: Theory and Applications, , London: Kluwer; Faddeev, V.K., Faddeeva, V.N., (1963) Vychislitel'nye Metody Lineinoi Algebry (Computational Methods of Linear Algebra), , Moscow: Gostekhizdat; Akimova, E.N., Parallelization of the Matrix Sweep Algorithm (1994) Mat. Model., 6 (9), pp. 61-67; Samarskii, A.A., Nikolaev, E.S., (1978) Metody Resheniya Setochnykh Uravnenii (Methods for Solving Grid Equations), , Moscow: Nauka; Akimova, E.N., Gemaidinov, D.V., Parallel Algorithms for Solving the Inverse Gravimetry Problem and Organization of Remote Communication between PCS-1000 and the User (2008) Vych. Met. Progr., 9 (1), pp. 133-144; Martyshko, P.S., Vasin, V.V., Akimova, E.N., P'yankov, V.A., Complex Interpretation of Gravitational and Magneto-Variational Data (Using Pre-Ural Bashkiria as an Example) (2011) Geofiz., pp. 30-36; Metodika razrabotki mnogopotochnykh prilozhenii: Printsipy i prakticheskaya realizatsiya (Methods of Developing Multithread Applications: Principles and Practical Implementation), , http://www.rsdn.ru/article/baseserv/RUThreadingMethodology.xml, URL, (download date: 06. 02. 2012)
Correspondence Address Akimova, E. N.; Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990, Russian Federation; email: aen15@yandex.ru
Language of Original Document English
Abbreviated Source Title Numer. Anal. Appl.
Source Scopus