Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals / Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. // Applied Physics Letters. - 2015. - V. 106, l. 18.

ISSN:
00036951
Type:
Article
Abstract:
Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions. © 2015 AIP Publishing LLC.
Author keywords:
Index keywords:
Crystals; Data handling; Digital storage; Electric fields; Ferroelectric materials; Ferroelectricity; Growth kinetics; Lithium; Niobium compounds; Congruent lithium niobate; Crystallographic direction
DOI:
10.1063/1.4919872
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928902748&doi=10.1063%2f1.4919872&partnerID=40&md5=3781c861f19c230723073dc364f516ca
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 182902
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928902748&doi=10.1063%2f1.4919872&partnerID=40&md5=3781c861f19c230723073dc364f516ca
Affiliations Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., Ekaterinburg, Russian Federation; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, United States
References Hatanaka, T., Nakamura, K., Taniuchi, T., Ito, H., Furukawa, Y., Kitamura, K., (2000) Opt. Lett., 25, p. 651; Sohler, W., Hu, H., Ricken, R., Quiring, V., Vannahme, C., Herrmann, H., Büchter, D., Min, Y., (2008) Opt. Photonics News, 19, p. 24; Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K., Kitamura, K., (2002) Appl. Phys. Lett., 81, p. 4401; Scott, J.F., (2007) Science, 315, p. 954; Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H., (1995) Phys. Rev. Lett., 74, p. 4309; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., (2010) Rep. Prog. Phys., 73; Paruch, P., Tybell, T., Triscone, J.M., (2001) Appl. Phys. Lett., 79, p. 530; Gruverman, A., Kholkin, A., (2006) Rep. Prog. Phys., 69, p. 2443; Shur, V.Ya., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., (2012) J. Appl. Phys., 112; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., (2014) Nat. Phys., 10, p. 59; Merz, W.J., (1954) Phys. Rev., 95, p. 690; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110; Shur, V.Ya., Shikhova, V.A., Ievlev, A.V., Zelenovskiy, P.S., Neradovskiy, M.M., Pelegov, D.V., Ivleva, L.I., (2012) J. Appl. Phys., 112; Shur, V.Ya., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., (2010) Ferroelectrics, 398, p. 91; Kokhanchik, L.S., Volk, T.R., (2013) Appl. Phys. B, 110, p. 367; Volk, T.R., Gainutdinov, R.V., Bodnarchuk, Y.V., Ivleva, L.I., (2013) JETP Lett., 97, p. 483; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Ya., Kalinin, S.V., (2015) ACS Nano, 9, p. 769; Pertsev, N.A., Kholkin, A.L., (2013) Phys. Rev. B, 88; Eng, L.M., Güntherodt, H.-J., Schneider, G.A., Köpke, U., Saldaña Muñoz, J., (1999) Appl. Phys. Lett., 74, p. 233; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 86; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., (2007) Nanotechnology, 18; Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M., (2002) Phys. Rev. Lett., 89; Shur, V.Ya., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., (2011) J. Appl. Phys., 110; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, , edited by J. W. P. Schmelzer (Wiley-VCH, Weinheim); Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199; Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Synthesis, Properties and Applications, pp. 622-669. , (Woodhead Publishing Ltd., Cambridge); Fridkin, V.M., (1980) Ferroelectric Semiconductors, , (Consultant Bureau, New York); Shur, V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., (2013) Appl. Phys. Lett., 103; Sturman, B.I., Fridkin, V.M., (1992) The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, , (OPA, Amsterdam); Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Ya., (2011) Phys. Rev. B, 83
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus