Charged domain walls in lithium niobate with inhomogeneous bulk conductivity / Pryakhina V.I., Alikin D.O., Palitsin I.S., Negashev S.A., Shur V.Y. // Ferroelectrics. - 2015. - V. 476, l. 1. - P. 109-116.

ISSN:
00150193
Type:
Article
Abstract:
The surface treatments by annealing in vacuum and by low energy ion irradiation have been used for inhomogeneous modification of the bulk conductivity of lithium niobate single crystals. The obtained inhomogeneous conductivity resulted in significant decreasing of external electric field in the treated volume. The inhomogeneous field distribution allowed us to obtain the polarization reversal in the bulk only, which led to formation of the domains with charged domain walls. The geometry of charged domain walls has been investigated by various methods. The proposed treatment techniques can be used for domain engineering in lithium niobate crystals. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Domain engineering; Domain structure; Ion irradiation; Vacuum annealing
Index keywords:
Electric fields; Ion bombardment; Irradiation; Lithium; Niobium compounds; Single crystals; Domain engineering; Domain structure; External electric field; Inhomogeneous conductivity; Lithium niobate c
DOI:
10.1080/00150193.2015.998585
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161289&doi=10.1080%2f00150193.2015.998585&partnerID=40&md5=56f0db2c0968af5a1f16546982df2f5d
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161289&doi=10.1080%2f00150193.2015.998585&partnerID=40&md5=56f0db2c0968af5a1f16546982df2f5d
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords Domain engineering; Domain structure; Ion irradiation; Vacuum annealing
Funding Details 13-02-01391-a, RFBR, Ministry of Education and Science; 13-02-96041-r-Ural-a, RFBR, Ministry of Education and Science; 14.594.21.0011, Ministry of Education and Science
References Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., Kiguchi, T., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes (2005) J. Appl. Phys., 98, p. 014109; Sluka, T., Tagantsev, A., Damjanovic, D., Gureev, M., Setter, N., Enhanced electromechanical response of ferroelectrics due to charged domain walls (2012) Nat. Commun., 3, p. 748; Catalan, G., Seidel, J., Ramesh, R., Scott, J.F., Domain wall nanoelectronics (2012) Rev. Mod. Phys., 84, pp. 119-156; Sluka, T., Tagantsev, A., Bednyakov, P., Setter, N., Free-electron gas at charged domain walls in insulating BaTiO 3 (2013) Nat Commun., 4, p. 1808; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat. Mater., 8, pp. 229-234; Fousek, J., Cross, L.E., Engineering multidomain ferroic samples (2001) Ferroelectrics., 252, pp. 171-180; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics., 389, pp. 3-9; Maksymovych, P., Morozovska, A.N., Yu, P., Eliseev, E.A., Chu, Y.H., Ramesh, R., Baddorf, A.P., Kalinin, S.V., Tunable metallic conductance in ferroelectric nanodomains (2012) Nano Lett., 12, pp. 209-213; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in Mg-doped LiNbO 3 (2004) J. Appl. Phys., 96, pp. 6585-6590; Schröder, M., Haußmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv. Funct. Mater., 22, pp. 3936-3944; Shur, V.Ya., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl. Phys. Lett., 103, p. 102905; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77 (22), pp. 3636-3638; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Ya., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys. Rev. B., 83, p. 235313; Weis, R.S., Gaylord, T.K., Lithium niobate: Summary of physical properties and crystal structure (1985) Appl. Phys. A., 37, pp. 191-203; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Berlin, Heidelberg: Springer-Verlag; Shur, V.Ya., Nano-and micro-domain engineering in normal and relaxor ferroelectrics (2008) Advanced Dielectric, Piezoelectric and Ferroelectric Materials-synthesis, Characterization and Applications, pp. 622-669. , Ye Z. G. Cambridge: Woodhead; Bordui, P.F., Jundt, D.H., Standifer, E.M., Norwood, R.G., Sawin, R.L., Galipeau, J.D., Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance (1999) J. Appl. Phys., 85, pp. 3766-3769; Shur, V.Ya., Korovina, N.V., Gruverman, A.L., Time dependence and distribution of the internal field in lead germanate (1985) Sov. Phys. Tech. Phys., 30, pp. 1204-1205; Shur, V.Y., Gruverman, A.L., Korovina, N.V., Orlova, M.Z., Sherstobitova, L.V., Spatial distribution of the internal field in lead germanate having different types of domain structure (1988) Phys. Solid State., 30, pp. 172-174; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Shur, V.Ya., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Ya., Bourson, P., Kuznetsov, D.K., Raman visualization of micro-and nanoscale domain structures in lithium niobate Appl. Phys. A-Mater. Sci. & Proc., 99, pp. 741-744; Shur, V.Ya., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using Raman confocal microscopy (2010) Ferroelectrics., 398, pp. 91-97; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO 3 and LiTaO 3 crystals (2011) J. Appl. Phys., 110 (5), p. 052013; Lushkin, A.Ye., Nazarenko, V.B., Pilipchak, K.P., Shnyukov, V.F., Naumovets, A.G., The impact of annealing and evaporation of LiNbO 3 crystals on their surface composition (1999) J. Phys. D: Appl. Phys., 32, pp. 22-28; Gnaser, H., (1999) Low-Energy Ion Irradiation of Solid Surfaces, , Berlin, Heidelberg: Springer; Klekamp, A., Donnerberg, H., Heiland, W., Snowdon, K.J., Electron bombardment induced desorption of oxygen from LiNbO 3 (1988) Surf Sci., 200, pp. L465-L469; Klekamp, A., Snowdon, K.J., Heiland, W., Radiation effects and defects in solids: Incorporating plasma science and plasma technology (1989) Radiat. Eff. Defects Solids., 108, pp. 241-249; Pryakhina, V.I., Shur, V.Y., Alikin, D.O., Negashev, S.A., Polarization reversal in MgO:LiNbO 3 single crystals modified by plasma-source ion irradiation (2012) Ferroelectrics., 439, pp. 20-32; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics., 236, pp. 129-144; Shur, V.Ya., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics., 340, pp. 3-16
Correspondence Address Pryakhina, V.I.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus