References |
Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., Kiguchi, T., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes (2005) J. Appl. Phys., 98, p. 014109; Sluka, T., Tagantsev, A., Damjanovic, D., Gureev, M., Setter, N., Enhanced electromechanical response of ferroelectrics due to charged domain walls (2012) Nat. Commun., 3, p. 748; Catalan, G., Seidel, J., Ramesh, R., Scott, J.F., Domain wall nanoelectronics (2012) Rev. Mod. Phys., 84, pp. 119-156; Sluka, T., Tagantsev, A., Bednyakov, P., Setter, N., Free-electron gas at charged domain walls in insulating BaTiO 3 (2013) Nat Commun., 4, p. 1808; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat. Mater., 8, pp. 229-234; Fousek, J., Cross, L.E., Engineering multidomain ferroic samples (2001) Ferroelectrics., 252, pp. 171-180; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics., 389, pp. 3-9; Maksymovych, P., Morozovska, A.N., Yu, P., Eliseev, E.A., Chu, Y.H., Ramesh, R., Baddorf, A.P., Kalinin, S.V., Tunable metallic conductance in ferroelectric nanodomains (2012) Nano Lett., 12, pp. 209-213; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in Mg-doped LiNbO 3 (2004) J. Appl. Phys., 96, pp. 6585-6590; Schröder, M., Haußmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv. Funct. Mater., 22, pp. 3936-3944; Shur, V.Ya., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl. Phys. Lett., 103, p. 102905; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77 (22), pp. 3636-3638; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Ya., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys. Rev. B., 83, p. 235313; Weis, R.S., Gaylord, T.K., Lithium niobate: Summary of physical properties and crystal structure (1985) Appl. Phys. A., 37, pp. 191-203; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Berlin, Heidelberg: Springer-Verlag; Shur, V.Ya., Nano-and micro-domain engineering in normal and relaxor ferroelectrics (2008) Advanced Dielectric, Piezoelectric and Ferroelectric Materials-synthesis, Characterization and Applications, pp. 622-669. , Ye Z. G. Cambridge: Woodhead; Bordui, P.F., Jundt, D.H., Standifer, E.M., Norwood, R.G., Sawin, R.L., Galipeau, J.D., Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance (1999) J. Appl. Phys., 85, pp. 3766-3769; Shur, V.Ya., Korovina, N.V., Gruverman, A.L., Time dependence and distribution of the internal field in lead germanate (1985) Sov. Phys. Tech. Phys., 30, pp. 1204-1205; Shur, V.Y., Gruverman, A.L., Korovina, N.V., Orlova, M.Z., Sherstobitova, L.V., Spatial distribution of the internal field in lead germanate having different types of domain structure (1988) Phys. Solid State., 30, pp. 172-174; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Shur, V.Ya., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Ya., Bourson, P., Kuznetsov, D.K., Raman visualization of micro-and nanoscale domain structures in lithium niobate Appl. Phys. A-Mater. Sci. & Proc., 99, pp. 741-744; Shur, V.Ya., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using Raman confocal microscopy (2010) Ferroelectrics., 398, pp. 91-97; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO 3 and LiTaO 3 crystals (2011) J. Appl. Phys., 110 (5), p. 052013; Lushkin, A.Ye., Nazarenko, V.B., Pilipchak, K.P., Shnyukov, V.F., Naumovets, A.G., The impact of annealing and evaporation of LiNbO 3 crystals on their surface composition (1999) J. Phys. D: Appl. Phys., 32, pp. 22-28; Gnaser, H., (1999) Low-Energy Ion Irradiation of Solid Surfaces, , Berlin, Heidelberg: Springer; Klekamp, A., Donnerberg, H., Heiland, W., Snowdon, K.J., Electron bombardment induced desorption of oxygen from LiNbO 3 (1988) Surf Sci., 200, pp. L465-L469; Klekamp, A., Snowdon, K.J., Heiland, W., Radiation effects and defects in solids: Incorporating plasma science and plasma technology (1989) Radiat. Eff. Defects Solids., 108, pp. 241-249; Pryakhina, V.I., Shur, V.Y., Alikin, D.O., Negashev, S.A., Polarization reversal in MgO:LiNbO 3 single crystals modified by plasma-source ion irradiation (2012) Ferroelectrics., 439, pp. 20-32; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics., 236, pp. 129-144; Shur, V.Ya., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics., 340, pp. 3-16 |