Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals / Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. // ACS Nano. - 2015. - V. 9, l. 1. - P. 769-777.

ISSN:
19360851
Type:
Article
Abstract:
Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching at nonpolar cuts of uniaxial ferroelectrics. In this case, the in-plane component of the polarization vector switches, allowing for detailed observations of the resultant domain morphologies. We observe a surprising variability of resultant domain morphologies stemming from a fundamental instability of the formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling the vertical tip position allows the polarity of the switching to be controlled. This represents a very unusual form of symmetry breaking where mechanical motion in the vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed. © 2014 American Chemical Society.
Author keywords:
domain structure; ferroelectric; lithium niobate; polarization switching; scanning probe microscopy; symmetry breaking
Index keywords:
Crystal symmetry; Ferroelectric materials; Ferroelectricity; Lithium; Morphology; Niobium compounds; Optical switches; Polarization; Scanning probe microscopy; Single crystals; Switching; Domain struc
DOI:
10.1021/nn506268g
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921806528&doi=10.1021%2fnn506268g&partnerID=40&md5=c38cb3f6cfab7b5d9867d9ec71c68af8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921806528&doi=10.1021%2fnn506268g&partnerID=40&md5=c38cb3f6cfab7b5d9867d9ec71c68af8
Affiliations Center for Nanophase Materials Sciences, 1 Bethel Valley Road, Oak Ridge, TN, United States; Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, United States; Institute of Natural Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation; Institute of Physics, National Academy of Sciences of Ukraine, 46 pr. Nauky, Kyiv, Ukraine; Taras Shevchenko Kyiv National University, 4 pr. Akademika Hlushkova, Kyiv, Ukraine; Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krjijanovskogo, Kyiv, Ukraine; Center for Research in Ceramics and Composite Materials (CICECO), Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
Author Keywords domain structure; ferroelectric; lithium niobate; polarization switching; scanning probe microscopy; symmetry breaking
References Hatanaka, T., Nakamura, K., Taniuchi, T., Ito, H., Furukawa, Y., Kitamura, K., Quasi-Phase-Matched Optical Parametric Oscillation with Periodically Poled Stoichiometric LiTaO3 (2000) Opt. Lett., 25, pp. 651-653; Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K., Kitamura, K., Tbit/Inch2 Ferroelectric Data Storage Based on Scanning Nonlinear Dielectric Microscopy (2002) Appl. Phys. Lett., 81, pp. 4401-4403; Sohler, W., Hu, H., Ricken, R., Quiring, V., Vannahme, C., Herrmann, H., Büchter, D., Orlov, S., Integrated Optical Devices in Lithium Niobate (2008) Opt. Photonics News, 19, pp. 24-31; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency, Quasiperiodicity and Chaos in Probe-Induced Ferroelectric Domain Switching (2014) Nat. Phys., 10, pp. 59-66; Scott, J.F., Nanoferroelectrics: Statics and Dynamics (2006) J. Phys.: Condens. Matter, 18, pp. 361-R386; Scott, J.F., Applications of Modern Ferroelectrics (2007) Science, 315, pp. 954-959; Dawber, M., Rabe, K.M., Scott, J.F., Physics of Thin-Film Ferroelectric Oxides (2005) Rev. Mod. Phys., 77, pp. 1083-1130; Tagantsev, A.K., Gerra, G., Interface-Induced Phenomena in Polarization Response of Ferroelectric Thin Films (2006) J. Appl. Phys., 100, p. 051607; Krug, I., Barrett, N., Petraru, A., Locatelli, A., Mentes, T.O., Nino, M.A., Rahmanizadeh, K., Schneider, C.M., Extrinsic Screening of Ferroelectric Domains in Pb(Zr0.48Ti0.52)O3 (2010) Appl. Phys. Lett., 97, p. 222903; Shur, V.Y., Kinetics of Ferroelectric Domains: Application of General Approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sci., 41, pp. 199-210; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , (Cosultant Bureau); Ievlev, A.V., Morozovska, A.N., Eliseev, E.A., Shur, V.Y., Kalinin, S.V., Ionic Field Effect and Memristive Phenomena in Single-Point Ferroelectric Domain Switching (2014) Nat. Commun.; Wang, R.V., Fong, D.D., Jiang, F., Highland, M.J., Fuoss, P.H., Thompson, C., Kolpak, A.M., Rappe, A.M., Reversible Chemical Switching of a Ferroelectric Film (2009) Phys. Rev. Lett., 102, p. 047601; Wang, J.L., Pancotti, A., Jegou, P., Niu, G., Gautier, B., Mi, Y.Y., Tortech, L., Barrett, N., Ferroelectricity in a Quasiamorphous Ultrathin BaTiO3 Film (2011) Phys. Rev. B, 84, p. 205426; Pancotti, A., Wang, J., Chen, P., Tortech, L., Teodorescu, C.-M., Frantzeskakis, E., Barrett, N., X-Ray Photoelectron Diffraction Study of Relaxation and Rumpling of Ferroelectric Domains in BaTiO3(001) (2013) Phys. Rev. B, 87, p. 184116; Hong, S., Colla, E.L., Kim, E., Taylor, D.V., Tagantsev, A.K., Muralt, P., No, K., Setter, N., High Resolution Study of Domain Nucleation and Growth during Polarization Switching in Pb(Zr,Ti)O3 Ferroelectric Thin Film Capacitors (1999) J. Appl. Phys., 86, pp. 607-613; Paruch, P., Tybell, T., Triscone, J.M., Nanoscale Control of Ferroelectric Polarization and Domain Size in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films (2001) Appl. Phys. Lett., 79, pp. 530-532; Terabe, K., Nakamura, M., Takekawa, S., Kitamura, K., Higuchi, S., Gotoh, Y., Cho, Y., Microscale to Nanoscale Ferroelectric Domain and Surface Engineering of a near-Stoichiometric LiNbO3 Crystal (2003) Appl. Phys. Lett., 82, pp. 433-435; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain Growth Kinetics in Lithium Niobate Single Crystals Studied by Piezoresponse Force Microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Agronin, A., Molotskii, M., Rosenwaks, Y., Rosenman, G., Rodriguez, B.J., Kingon, A.I., Gruverman, A., Dynamics of Ferroelectric Domain Growth in the Field of Atomic Force Microscope (2006) J. Appl. Phys., 99, p. 104102; Kan, Y., Lu, X., Wu, X., Zhu, J., Domain Reversal and Relaxation in LiNbO3 Single Crystals Studied by Piezoresponse Force Microscope (2006) Appl. Phys. Lett., 89, p. 262907; Liu, X., Kitamura, K., Terabe, K., Thermal Stability of LiTaO3 Domains Engineered by Scanning Force Microscopy (2006) Appl. Phys. Lett., 89, p. 142906; Dahan, D., Molotskii, M., Rosenman, G., Rosenwaks, Y., Ferroelectric Domain Inversion: The Role of Humidity (2006) Appl. Phys. Lett., 89, p. 152902; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., Anomalous Polarization Inversion in Ferroelectrics via Scanning Force Microscopy (2007) Nanotechnology, 18, p. 095502; Pertsev, N.A., Petraru, A., Kohlstedt, H., Waser, R., Bdikin, I.K., Kiselev, D., Kholkin, A.L., Dynamics of Ferroelectric Nanodomains in BaTiO3 Epitaxial Thin Films via Piezoresponse Force Microscopy (2008) Nanotechnology, 19, p. 375703; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of Adsorbed Surface Layer on Domain Growth in the Field Produced by Conductive Tip of Scanning Probe Microscope in Lithium Niobate (2011) J. Appl. Phys., 110, p. 052017; Ievlev, A.V., Morozovska, A.N., Shur, V.Y., Kalinin, S.V., Humidity Effects on Tip-Induced Polarization Switching in Lithium Niobate (2014) Appl. Phys. Lett., 104, p. 092908; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the Nanodomain Structure Formation by Piezoelectric Force Microscopy and Raman Confocal Microscopy in Linbo3 and Litao3 Crystals (2011) J. Appl. Phys., 110, p. 052013; Zelenovskiy, P.S., Shikhova, V.A., Ievlev, A.V., Neradovskiy, M.M., Shur, V.Y., Micro-Raman Visualization of Domain Structure in Strontium Barium Niobate Single Crystals (2012) Ferroelectrics, 439, pp. 33-39; Shur, V.Y., Zelenovskiy, P.S., Micro- and Nanodomain Imaging in Uniaxial Ferroelectrics: Joint Application of Optical, Confocal Raman, and Piezoelectric Force Microscopy (2014) J. Appl. Phys., 116, p. 066802; Eng, L.M., Güntherodt, H.-J., Schneider, G.A., Köpke, U., Muñoz Saldaña, J., Nanoscale Reconstruction of Surface Crystallography from Three-Dimensional Polarization Distribution in Ferroelectric Barium-Titanate Ceramics (1999) Appl. Phys. Lett., 74, pp. 233-235; Pertsev, N.A., Kholkin, A.L., Subsurface Nanodomains with in-Plane Polarization in Uniaxial Ferroelectrics via Scanning Force Microscopy (2013) Phys. Rev. B, 88, p. 174109; Volk, T.R., Gainutdinov, R.V., Bodnarchuk, Y.V., Ivleva, L.I., Creation of Domains and Domain Patterns on the Nonpolar Surface of SrxBa1-xNb2O6 Crystals by Atomic Force Microscopy (2013) JETP Lett., 97, pp. 483-489; Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., Molotskii, M., Submicron Ferroelectric Domain Structures Tailored by High-Voltage Scanning Probe Microscopy (2003) Appl. Phys. Lett., 82, pp. 103-105; Morozovska, A.N., Eliseev, E.A., Bravina, S.L., Kalinin, S.V., Landau-Ginzburg-Devonshire Theory for Electromechanical Hysteresis Loop Formation in Piezoresponse Force Microscopy of Thin Films (2011) J. Appl. Phys., 110, p. 052011; Morozovska, A.N., Eliseev, E.A., Li, Y., Svechnikov, S.V., Maksymovych, P., Shur, V.Y., Gopalan, V., Kalinin, S.V., Thermodynamics of Nanodomain Formation and Breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire Approach (2009) Phys. Rev. B, 80, p. 214110; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., Ferroelectric Domain Breakdown (2003) Phys. Rev. Lett., 90, p. 107601; Bühlmann, S., Colla, E., Muralt, P., Polarization Reversal Due to Charge Injection in Ferroelectric Films (2005) Phys. Rev. B, 72, p. 214120; Shishkin, E.I., Shur, V.Y., Mieth, O., Eng, L.M., Galambos, L.L., Miles, R.O., Kinetics of the Local Polarization Switching in Stoichiometric LiTaO3 under Electric Field Applied Using the Tip of Scanning Probe Microscope (2006) Ferroelectrics, 340, pp. 129-136; Lilienblum, M., Soergel, E., Anomalous Domain Inversion in LiNbO3 Single Crystals Investigated by Scanning Probe Microscopy (2011) J. Appl. Phys., 110, p. 052018; Strelcov, E., Ievlev, A.V., Jesse, S., Kravchenko, I.I., Shur, V.Y., Kalinin, S.V., Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric Linbo3 Surfaces (2014) Adv. Mater., 26, pp. 958-963; Shur, V.Y., Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization Reversal and Domain Kinetics in Magnesium Doped Stoichiometric Lithium Tantalate (2014) Appl. Phys. Lett., 105, p. 152905
Correspondence Address Ievlev, A.V.; Center for Nanophase Materials Sciences, 1 Bethel Valley Road, United States
Publisher American Chemical Society
Language of Original Document English
Abbreviated Source Title ACS Nano
Source Scopus