Polarization reversal in MgO: LiNbO3 single crystals modified by plasma-source ion irradiation / Pryakhina V.I., Shur V.Ya., Alikin D.O., Negashev S.A. // Ferroelectrics. - 2012. - V. 439, l. 1. - P. 20-32.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The polarization reversal has been studied by domain structure visualization and switching current recording in LiNbO3 single crystals doped by 5% MgO irradiated by Ar+ ions. The abnormal domain structure evolution representing formation of charged domain walls has been revealed. It has been shown that low energy ion irradiation leads to increase of the bulk conductivity due to oxygen out-diffusion induced by radiative heating in vacuum. The inhomogeneous distribution of the electric field terminated the polarization reversal in high conductive layer. The analysis of the switching current data allowed revealing the input of the conductive current through charged domain walls. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Bulk conductivity; Domain engineering; Domain structure; Ion irradiation; Lithium niobate; Nanodomains; Polarization reversal
Index keywords:
Bulk conductivities; Domain engineering; Domain structure; Lithium niobate; Nano domain; Polarization reversals; Electric fields; Ferroelectricity; Ion bombardment; Irradiation; Magnesia; Single cryst
DOI:
10.1080/00150193.2012.743374
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875894033&doi=10.1080%2f00150193.2012.743374&partnerID=40&md5=e17c6c7ff002b1ed6b61d4830c79d2db
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875894033&doi=10.1080%2f00150193.2012.743374&partnerID=40&md5=e17c6c7ff002b1ed6b61d4830c79d2db
Affiliations Ferroelectric Laboratory, Institute of the Natural Science, Ural Federal University, 620000 Ekaterinburg, Russian Federation
Author Keywords Bulk conductivity; Domain engineering; Domain structure; Ion irradiation; Lithium niobate; Nanodomains; Polarization reversal
References Shur, Ya.V., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , ed. by Z.-G. Ye Woodhead Publishing Ltd., Cambridge; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl. Phys. Lett., 62, pp. 435-436; Myers, L.E., Eckhardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J. Opt. Soc. Am. B, 12, pp. 2102-2116; Pruneri, V., Webjorn, J., St. Russell, P.J., Hanna, D.C., 532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate (1995) Appl. Phys. Lett., 67, pp. 2126-2128; Canalias, C., Pasiskevicius, V., Fokine, M., Laurell, F., Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4 (2005) Appl. Phys. Lett., 86, p. 181105; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in mg-doped LiNbO3 (2004) J. Appl. Phys., 11, pp. 6585-6590; Alikin, D.O., Shishkin, E.I., Nikolaeva, E.V., Shur, Ya.V., Sarmanova, M.F., Ievlev, A.V., Nebogatikov, M.S., Gavrilov, N.V., Formation of self-assembled domain structures in lithium niobate modified by ar ions implantation (2010) Ferroelectrics, 399, pp. 35-42; Shur, Ya.V., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with ar ions (2012) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, pp. 1934-1941; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Springer, Berlin; Bordui, P.F., Jundt, D.H., Standifer, E.M., Norwood, R.G., Sawin, R.L., Galipeau, J.D., Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance (1999) J. Appl. Phys., 85, pp. 3766-3768; Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J., Tran, N.C., Plasma source ionimplantation technique for surface modification of materials (1987) J. Appl. Phys., 62, pp. 4591-4596; Chen, F., Photonic guiding structures in lithium niobate crystals produced by energetic ion beams (2009) J. Appl. Phys., 106, p. 081101; Schreck, E., Dransfeld, K., Enhanced electrical surface conductivity of LiNbO3 induced by argon-ion bombardment (1987) Appl. Phys. A, 44, pp. 265-268; Kim, I.W., Kim, S.W., Hwang, Y.H., Jin, B.M., Kim, S.C., Pichugin, V.F., Frangulian, T.S., Stoliarenko, V.F., Ar ion irradiation and reduction effect of the MgO: Linbo3 single crystals (2001) Ferroelectrics, 261, pp. 263-268; Turcicova, H., Vacik, J., Cervena, J., Perina, V., Polcarova, M., Bradler, J., Zelezny, V., Zemek, J., LiNbO3 exposed to radio-frequency plasma (1998) Nucl. Instrum. Methods Phys. Res., 141, pp. 494-497; Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H., (1995) Phys. Rev. Lett., 74, pp. 4309-4312; Shur, Ya.V., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110, p. 052017; Shishkin, E.I., Ievlev, A.V., Nikolaeva, E.V., Nebogatikov, M.S., Shur, Ya.V., Local study of polarization reversal kinetics in ferroelectric crystals using scanning probe microscopy (2008) Ferroelectrics, 374, pp. 170-176; Zelenovskiy, P.S., Fontana, M.D., Shur, Ya.V., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A, 99, pp. 741-744; Shur, Ya.V., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Investigation of the nanodomain structure formation by piezoelectric force microscopy and raman Confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110, p. 052013; Dolbilov, M.A., Shishkin, E.I., Shur, Ya.V., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398, pp. 108-114; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, Ya.V., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys. Rev. B, 83, p. 235313; Shur, Ya.V., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys., 84, pp. 445-451; Shur, Ya.V., Rumyantsev, E.L., Makarov, S.D., Subbotin, A.L., Volegov, V.V., Transient current during switching in increasing electric field as a basis for a new testing method (1995) Integr. Ferroelectr., 10, pp. 223-230; Shur, Ya.V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77, pp. 3636-3638
Correspondence Address Pryakhina, V.I.; Ferroelectric Laboratory, Institute of the Natural Science, Ural Federal University, 620000 Ekaterinburg, Russian Federation; email: Victoria@labfer.usu.ru
Conference name 11th International Symposium on Ferroic Domains and Micro- to Nanoscopic Structures, ISFD 2012, and 11th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity, RCBJSF 2012
Conference date 20 August 2012 through 24 August 2012
Conference location Ekaterinburg
Conference code 96358
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus