Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with ar ions / Shur V.Y., Alikin D.O., Ievlev A.V., Dolbilov M.A., Sarmanova M.F., Gavrilov N.V. // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. - 2012. - V. 59, l. 9. - P. 1934-1941.

ISSN:
08853010
Type:
Article
Abstract:
We present the experimental study of the formation of self-similar nanodomain structures during polarization reversal in single-crystalline congruent lithium niobate (CLN) implanted by Ar ions. The formed dense surface nanodomain structure with charged domain walls differs drastically from the growth of the hexagonal domains in unimplanted CLN. The lack of wall shape stability during sideways domain wall motion was revealed. The analysis of the domain structure images in the bulk, obtained by Raman confocal microscopy, revealed the main stages of the domain structure evolution starting at unimplanted polar surface and consisting of nanodomain chain elongation, merging of isolated domains, and domain widening. The switching current data has been fitted by modification of Kolmogorov-Avrami formula for switching in a linearly increasing field. The observed experimental facts have been attributed to formation of an amorphous thin surface layer and increase of the bulk conductivity resulting from oxygen out-diffusion under radiation heating in vacuum during ion implantation. The formation of the experimentally obtained abnormal domain shapes has been explained while taking into account the step generation at the domain wall in the bulk during switching in a low electric field. © 2012 IEEE.
Author keywords:
Index keywords:
Bulk conductivities; Chain elongation; Charged domain wall; Congruent lithium niobate; Dense surface; Domain shape; Domain structure; Domain wall motion; Experimental studies; In-vacuum; Nanodomain st
DOI:
10.1109/TUFFC.2012.2410
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866658189&doi=10.1109%2fTUFFC.2012.2410&partnerID=40&md5=9d078c7fbd8cf2a83f44d35a18b0c245
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 6306012
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866658189&doi=10.1109%2fTUFFC.2012.2410&partnerID=40&md5=9d078c7fbd8cf2a83f44d35a18b0c245
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Particle Beam Laboratory, Institute of Electrophysics, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
References Ya. Shur, V., Nano-and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Cambridge, UK: Woodhead Publishing Ltd; Manzo, M., Laurell, F., Pasiskevicius, V., Gallo, K., Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange (2012) Appl. Phys. Lett., 98 (12). , art. no. 122910; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6 (4), pp. 549-592; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl. Phys. Lett., 62 (5), pp. 435-436; Myers, L.E., Eckhardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J. Opt. Soc. Am. B, 12 (11), pp. 2102-2116; Pruneri, V., Webjorn, J., St. J Russell, P., Hanna, D.C., 532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate (1995) Appl. Phys. Lett., 67 (15), pp. 2126-2128; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) C. R. Phys., 8 (2), pp. 180-198; Ya. Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , J. W. P. Schmelzer, Ed., Weinheim, Germany: Wiley-VCH; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398 (1), pp. 108-114; Chen, F., Photonic guiding structures in lithium niobate crystals produced by energetic ion beams (2009) J. Appl. Phys., 106 (8). , art. no. 081101; Peithmann, K., Zamani-Meymian, M.-R., Haaks, M., Maier, K., Andreas, B., Buse, K., Modrow, H., Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage (2005) Appl. Phys. B, 82 (3), pp. 419-422; Ruiz, T., Méndez, A., Carrascosa, M., Carnicero, J., García- Cabañes, A., Olivares, J., Agulló-López, F., García, G., Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation (2007) J. Phys. D, 40 (15), pp. 4454-4459; Schreck, E., Dransfeld, K., Enhanced electrical surface conductivity of LiNbO3 induced by argon-ion bombardment (1987) Appl. Phys. A, 44 (3), pp. 265-268; Bordui, P.F., Jundt, D.H., Standifer, E.M., Norwood, R.G., Sawin, R.L., Galipeau, J.D., Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance (1999) J. Appl. Phys., 85 (7), pp. 3766-3768; Plaksin, O.A., Kono, K., Takeda, Y., Plaksin, S.O., Ya. Shur, V., Kishimoto, N., Dynamic stability of metal-nanocluster composites based on LiNbO3 under heavy-ion bombardment (2008) Ferroelectrics, 373 (1), pp. 127-132; Shishkin, E.I., Nikolaeva, E.V., Ya. Shur, V., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation (2010) Ferroelectrics, 399 (1), pp. 49-57; Gruverman, A., Alexe, M., (2004) Characterization of Ferroelectric Materials, , New York, NY: Springer; Zelenovskiy, P.S., Fontana, M.D., Ya. Shur, V., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A, 99 (4), pp. 741-744; Ya. Shur, V., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110 (5). , art. no. 052013; Alikin, D.O., Shishkin, E.I., Nikolaeva, E.V., Ya. Shur, V., Sarmanova, M.F., Ievlev, A.V., Nebogatikov, M.S., Gavrilov, N.V., Formation of self-assembled domain structures in lithium niobate modified by Ar ions implantation (2010) Ferroelectrics, 399 (1), pp. 35-42; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , New York, NY: Consultant Bureau; Janovec, V., Anti-parallel ferroelectric domain in surface spacecharge layers of BaTiO3 (1959) Czech. J. Phys., 9 (4), pp. 468-480; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl. Phys. Lett., 86 (2). , art. no. 022906; Ya. Shur, V., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99 (8). , art. no. 082901; Ya. Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett., 76 (2), pp. 143-145; Ya. Shur, V., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys., 84 (1), pp. 445-451; Ya. Shur, V., Rumyantsev, E.L., Makarov, S.D., Subbotin, A.L., Volegov, V.V., Transient current during switching in increasing electric field as a basis for a new testing method (1995) Integr. Ferroelectr., 10 (1-4), pp. 223-230; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Ya. Shur, V., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys. Rev. B, 83 (23). , art. no. 235313
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
CODEN ITUCE
Language of Original Document English
Abbreviated Source Title IEEE Trans Ultrason Ferroelectr Freq Control
Source Scopus