References |
Ya. Shur, V., Nano-and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Cambridge, UK: Woodhead Publishing Ltd; Manzo, M., Laurell, F., Pasiskevicius, V., Gallo, K., Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange (2012) Appl. Phys. Lett., 98 (12). , art. no. 122910; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6 (4), pp. 549-592; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl. Phys. Lett., 62 (5), pp. 435-436; Myers, L.E., Eckhardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J. Opt. Soc. Am. B, 12 (11), pp. 2102-2116; Pruneri, V., Webjorn, J., St. J Russell, P., Hanna, D.C., 532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate (1995) Appl. Phys. Lett., 67 (15), pp. 2126-2128; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) C. R. Phys., 8 (2), pp. 180-198; Ya. Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , J. W. P. Schmelzer, Ed., Weinheim, Germany: Wiley-VCH; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398 (1), pp. 108-114; Chen, F., Photonic guiding structures in lithium niobate crystals produced by energetic ion beams (2009) J. Appl. Phys., 106 (8). , art. no. 081101; Peithmann, K., Zamani-Meymian, M.-R., Haaks, M., Maier, K., Andreas, B., Buse, K., Modrow, H., Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage (2005) Appl. Phys. B, 82 (3), pp. 419-422; Ruiz, T., Méndez, A., Carrascosa, M., Carnicero, J., García- Cabañes, A., Olivares, J., Agulló-López, F., García, G., Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation (2007) J. Phys. D, 40 (15), pp. 4454-4459; Schreck, E., Dransfeld, K., Enhanced electrical surface conductivity of LiNbO3 induced by argon-ion bombardment (1987) Appl. Phys. A, 44 (3), pp. 265-268; Bordui, P.F., Jundt, D.H., Standifer, E.M., Norwood, R.G., Sawin, R.L., Galipeau, J.D., Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance (1999) J. Appl. Phys., 85 (7), pp. 3766-3768; Plaksin, O.A., Kono, K., Takeda, Y., Plaksin, S.O., Ya. Shur, V., Kishimoto, N., Dynamic stability of metal-nanocluster composites based on LiNbO3 under heavy-ion bombardment (2008) Ferroelectrics, 373 (1), pp. 127-132; Shishkin, E.I., Nikolaeva, E.V., Ya. Shur, V., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation (2010) Ferroelectrics, 399 (1), pp. 49-57; Gruverman, A., Alexe, M., (2004) Characterization of Ferroelectric Materials, , New York, NY: Springer; Zelenovskiy, P.S., Fontana, M.D., Ya. Shur, V., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A, 99 (4), pp. 741-744; Ya. Shur, V., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110 (5). , art. no. 052013; Alikin, D.O., Shishkin, E.I., Nikolaeva, E.V., Ya. Shur, V., Sarmanova, M.F., Ievlev, A.V., Nebogatikov, M.S., Gavrilov, N.V., Formation of self-assembled domain structures in lithium niobate modified by Ar ions implantation (2010) Ferroelectrics, 399 (1), pp. 35-42; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , New York, NY: Consultant Bureau; Janovec, V., Anti-parallel ferroelectric domain in surface spacecharge layers of BaTiO3 (1959) Czech. J. Phys., 9 (4), pp. 468-480; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl. Phys. Lett., 86 (2). , art. no. 022906; Ya. Shur, V., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99 (8). , art. no. 082901; Ya. Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett., 76 (2), pp. 143-145; Ya. Shur, V., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys., 84 (1), pp. 445-451; Ya. Shur, V., Rumyantsev, E.L., Makarov, S.D., Subbotin, A.L., Volegov, V.V., Transient current during switching in increasing electric field as a basis for a new testing method (1995) Integr. Ferroelectr., 10 (1-4), pp. 223-230; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Ya. Shur, V., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys. Rev. B, 83 (23). , art. no. 235313 |