Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO 3 crystals / Shur V.Ya., Zelenovskiy P.S., Nebogatikov M.S., Alikin D.O., Sarmanova M.F., Ievlev A.V., Mingaliev E.A., Kuznetsov D.K. // Journal of Applied Physics. - 2011. - V. 110, l. 5.

ISSN:
00218979
Type:
Conference Paper
Abstract:
Piezoelectric force microscopy (PFM) and Raman confocal microscopy have been used for studying the nanodomain structures in congruent LiNbO3 and LiTaO3 crystals. The high-resolution nanodomain images at the surface were observed via PFM. Raman confocal microscopy has been used for the visualization of the nanodomain structures in the bulk via layer-by-layer scanning at various depths. It has been shown experimentally that the nanodomain images obtained at different depths correspond to domain images at the polar surface obtained at different moments: the deeper the nanodomain, the earlier the moment. Such a correlation was applied for the reconstruction of the evolution of the domain structures with charged domain walls. The studied domain structures were obtained in highly non-equilibrium switching conditions realized in LiNbO3 and LiTaO3 via pulse laser irradiation and the electric field poling of LiNbO3, with the surface layer modified by ion implantation. The revealed main stages of the domain structure evolution allow the authors to demonstrate that all geometrically different nanodomain structures observed in LiNbO3 and LiTaO3 appeared as a result of discrete switching. © 2011 American Institute of Physics.
Author keywords:
Index keywords:
Charged domain wall; Domain structure; Electric field poling; High resolution; Layer-by-layers; Nanodomain structures; Non equilibrium; Piezoelectric force microscopy; Polar surfaces; Pulse laser irra
DOI:
10.1063/1.3623778
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052946753&doi=10.1063%2f1.3623778&partnerID=40&md5=d2d1e78f69f2453bd870a5bf3e3f7a43
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 052013
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052946753&doi=10.1063%2f1.3623778&partnerID=40&md5=d2d1e78f69f2453bd870a5bf3e3f7a43
Affiliations Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation
References Shur, V.Ya., (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, pp. 622-669. , in, edited by Z.-G. Ye (Woodhead Publishing Ltd., Cambridge, England); Shur, V.Ya., (2010) Ferroelectrics, 399, p. 97. , 10.1080/00150193.2010.490290; Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549. , 10.1142/S021886359700040X; Hum, D.S., Fejer, M.M., (2007) C. R. Phys., 8, p. 180. , 10.1016/j.crhy.2006.10.022; Armstrong, J.A., Bloembergen, N., Ducuing, J., Perhsan, P.S., (1962) Phys. Rev., 127, p. 1918. , 10.1103/PhysRev.127.1918; Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199. , 10.1007/s10853-005-6065-7; Shur, V.Ya., Gruverman, A.L., Rumyantsev, E.L., (1990) Ferroelectrics, 111, p. 123. , 10.1080/00150199008224389; Merz, W.J., (1954) Phys. Rev., 95, p. 690. , 10.1103/PhysRev.95.690; Shur, V.Ya., Rumyantsev, E.L., (1994) Ferroelectrics, 151, p. 171. , 10.1080/00150199408244739; Ohnishi, N., Iizuka, T., (1975) J. Appl. Phys., 46, p. 1063. , 10.1063/1.322211; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 87, p. 022905. , 10.1063/1.1993769; Gruverman, A., Kalinin, S.V., (2006) J. Mater. Sci., 41, p. 107. , 10.1007/s10853-005-5946-0; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 86, p. 012906. , 10.1063/1.1845594; Miller, R.C., Savage, A., (1959) Phys. Rev. Lett., 2, p. 294. , 10.1103/PhysRevLett.2.294; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V.Ya., (2008) Appl. Phys. A, 91, p. 65. , 10.1007/s00339-007-4356-3; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Ya., Bourson, P., Kuznetsov, D.K., (2010) Appl. Phys. A, 99, p. 741. , 10.1007/s00339-010-5621-4; Shur, V.Ya., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., (2010) Ferroelectrics, 398, p. 91. , 10.1080/00150193.2010.489838; Capek, P., Stone, G., Dierolf, V., Althouse, C., Gopalan, V., (2007) Phys. Status Solidi, 4, p. 830. , 10.1002/pssc.v4:3; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., (2001) Ferroelectrics, 253, p. 105. , 10.1080/00150190108008448; Shur, V.Ya., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., (2006) Ferroelectrics, 341, p. 85. , 10.1080/00150190600897075; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., (2000) Appl. Phys. Lett., 76, p. 143. , 10.1063/1.125683; Alikin, D.O., Shishkin, E.I., Nikolaeva, E.V., Shur, V.Ya., Sarmanova, M.F., Ievlev, A.V., Nebogatikov, M.S., Gavrilov, N.V., (2010) Ferroelectrics, 399, p. 35. , 10.1080/00150193.2010.489855; Shur, V.Ya., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., Appl. Phys. Lett., , In Situ Investigation Of Formation Of Self-Assembled Nanodomain Structure In Lithium Niobate After Pulse Laser Irradiation, (submitted); Shur, V.Ya., Rumyantsev, E.L., Makarov, S.D., (1998) J. Appl. Phys., 84, p. 445. , 10.1063/1.368047; Kuznetsov, D.K., Shur, V.Ya., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., (2010) Ferroelectrics, 398, p. 49. , 10.1080/00150193.2010.489813
Correspondence Address Shur, V.Ya.; Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus