References |
Shur, V.Ya., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and FerroelectricMaterials. Synthesis, Properties and Applications, pp. 622-669. , Z.-G. Ye (Ed.), Woodhead Publishing Ltd; Shur, V.Ya., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Ya., Rumyantsev, E.L., Kinetics of ferroelectric domain structure during switching: Theory and experiment (1994) Ferroelectrics, 151, pp. 171-180; Shur, V.Ya., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sc., 41, pp. 199-210; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, pp. 157-167; Capek, P., Stone, G., Dierolf, V., Althouse, C., Gopalan, V., Raman studies of ferroelectric domain walls in lithium tantalate and niobate (2007) Phys. Stat. Sol., 4, pp. 830-833; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V., Characterization of PPLN-microstructures by means of raman spectroscopy (2008) Appl. Phys. A, 91, pp. 65-67; Shishkin, E.I., Shur, V.Ya., Schlaphof, F., Eng, L.M., Observation and manipulation of the as-grown maze domain structure in lead germanate by scanning force microscopy (2006) Appl. Phys. Lett., 88, pp. 252902-252905; Caciuc, V., Postnikov, A.V., Borste, G., Ab initio structure and zone-center phonons in LiNbO3 (2000) Phys. Rev. B, 61, pp. 8806-8813; Mouras, R., Fontana, M.D., Bourson, P., Postnikov, A.V., Lattice site of Mg Ion in LiNbO3 crystal determined by raman spectroscopy (2000) J. Phys. Condens. Matter, 12 (23), pp. 5053-5059; Batchko, R.G., Fejer, M.M., Byer, R.L., Woll, D., Wallenstein, R., Shur, V.Ya., Erman, L., Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate (1999) Opt. Lett., 24 (18), pp. 1293-1295; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics, 340, pp. 49-62; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , J. W. P. Schmelzer (ed.), Weinheim: WILEY-VCH; Everall, N.J., Modeling and measuring the effect of refraction on the depth resolution of confocal raman microscopy (2000) Appl. Spectrosc., 6 (54), pp. 773-782; Kuzminov, Y.S., (1987) Lithium Niobate Electrooptical and Nonlinear Optical Crystal, , Moscow: Nauka; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate (2000) SPIE Proc. on Smart Struct. & Mater., 3992, pp. 143-154; Dolbilov, M.A., Shur, V.Ya., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., DeMicheli, M.P., Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate (2008) Ferroelectrics, 374, pp. 158-163 |