Study of nanoscale domain structure formation using Raman confocal microscopy / Shur V.Ya., Shishkin E.I., Nikolaeva E.V., Nebogatikov M.S., Alikin D.O., Zelenovskiy P.S., Sarmanova M.F., Dolbilov M.A. // Ferroelectrics. - 2010. - V. 398, l. 1. - P. 91-97.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The original technique based on the laser confocal microscopy and Raman spectroscopy was applied for the domain visualization in the bulk of lithium niobate LiNbO3 (LN) single crystal. The change of the Raman spectrum in the vicinity of the domain walls of LN was used. The technique capabilities were inspected in LN with different types of domain geometry. The estimation of the spatial resolution at different depth was carried out for periodically poled LN. The proposed analysis of the three-dimensional nanodomain image allows us to characterize the evolution of the self-assembled nanodomain structures produced in LN with surface layer modification. Copyright © Taylor & Francis Group, LLC.
Author keywords:
confocal microscopy; domain evolution; ion implantation; Lithium niobate; nanodomains; polarization reversal; proton exchange; Raman spectroscopy; surface modification
Index keywords:
Domain evolution; Lithium niobate; Nano domain; Polarization reversals; Proton exchange; Surface modification; Biology; Confocal microscopy; Ferroelectric materials; Ferroelectricity; Ion exchange; Io
DOI:
10.1080/00150193.2010.489838
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954792123&doi=10.1080%2f00150193.2010.489838&partnerID=40&md5=39938ff8c2bc03ec9621f46cc6cada63
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954792123&doi=10.1080%2f00150193.2010.489838&partnerID=40&md5=39938ff8c2bc03ec9621f46cc6cada63
Affiliations Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation
Author Keywords confocal microscopy; domain evolution; ion implantation; Lithium niobate; nanodomains; polarization reversal; proton exchange; Raman spectroscopy; surface modification
References Shur, V.Ya., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and FerroelectricMaterials. Synthesis, Properties and Applications, pp. 622-669. , Z.-G. Ye (Ed.), Woodhead Publishing Ltd; Shur, V.Ya., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Ya., Rumyantsev, E.L., Kinetics of ferroelectric domain structure during switching: Theory and experiment (1994) Ferroelectrics, 151, pp. 171-180; Shur, V.Ya., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sc., 41, pp. 199-210; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, pp. 157-167; Capek, P., Stone, G., Dierolf, V., Althouse, C., Gopalan, V., Raman studies of ferroelectric domain walls in lithium tantalate and niobate (2007) Phys. Stat. Sol., 4, pp. 830-833; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V., Characterization of PPLN-microstructures by means of raman spectroscopy (2008) Appl. Phys. A, 91, pp. 65-67; Shishkin, E.I., Shur, V.Ya., Schlaphof, F., Eng, L.M., Observation and manipulation of the as-grown maze domain structure in lead germanate by scanning force microscopy (2006) Appl. Phys. Lett., 88, pp. 252902-252905; Caciuc, V., Postnikov, A.V., Borste, G., Ab initio structure and zone-center phonons in LiNbO3 (2000) Phys. Rev. B, 61, pp. 8806-8813; Mouras, R., Fontana, M.D., Bourson, P., Postnikov, A.V., Lattice site of Mg Ion in LiNbO3 crystal determined by raman spectroscopy (2000) J. Phys. Condens. Matter, 12 (23), pp. 5053-5059; Batchko, R.G., Fejer, M.M., Byer, R.L., Woll, D., Wallenstein, R., Shur, V.Ya., Erman, L., Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate (1999) Opt. Lett., 24 (18), pp. 1293-1295; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics, 340, pp. 49-62; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , J. W. P. Schmelzer (ed.), Weinheim: WILEY-VCH; Everall, N.J., Modeling and measuring the effect of refraction on the depth resolution of confocal raman microscopy (2000) Appl. Spectrosc., 6 (54), pp. 773-782; Kuzminov, Y.S., (1987) Lithium Niobate Electrooptical and Nonlinear Optical Crystal, , Moscow: Nauka; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate (2000) SPIE Proc. on Smart Struct. & Mater., 3992, pp. 143-154; Dolbilov, M.A., Shur, V.Ya., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., DeMicheli, M.P., Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate (2008) Ferroelectrics, 374, pp. 158-163
Correspondence Address Shur, V. Ya.; Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, 620083 Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
Conference name 3rd International Symposium on Ferroelectric Domain Structuring, ISDS'09
Conference date 13 September 2009 through 18 September 2009
Conference location Ekaterinburg
Conference code 81192
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus