Subchronic systemic toxicity and bioaccumulation of Fe3O 4 nano- and microparticles following repeated intraperitoneal administration to rats / Katsnelson B.A., Degtyareva T.D., Minigalieva I.I., Privalova L.I., Kuzmin S.V., Yeremenko O.S., Kireyeva E.P., Sutunkova M.P., Valamina I.I., Khodos M.Y., Kozitsina A.N., Shur V.Y., Vazhenin V.A., Potapov A.P., Morozova M.V. // International Journal of Toxicology. - 2011. - V. 30, l. 1. - P. 59-68.

ISSN:
10915818
Type:
Article
Abstract:
Aqueous suspensions of 10 nm, 50 nm, or 1 μm Fe3O4 particles were injected intraperitoneally (ip) to rats at a dose of 500 mg/kg in 4 mL of sterile deionized water 3 times a week for 5 weeks. Following exposure, functional and biochemical indices and histopathological examinations of spleen and liver tissues of exposed rats were evaluated for signs of toxicity. The iron content of the blood was measured photometrically, and that of the liver and the spleen by atomic adsorption spectroscopy (AAS) and electron paramagnetic resonance (EPR) methods. It was found that, given equal mass doses, Fe3O4 nanoparticles possess considerably higher systemic toxicity than microparticles, but within the nanometric range the relationship between particle size and resorptive toxicity is intricate and nonunique. The latter fact may be attributed to differences in different nanoparticles' toxicokinetics, which are controlled by both more or less substantial direct penetration of nanoparticles through biological barriers and their unequal solubility. © The Author(s) 2011.
Author keywords:
magnetite; nanoparticles; subchronic toxicity
Index keywords:
ferric oxide; iron; nanoparticle; water; animal experiment; animal tissue; article; atomic absorption spectrometry; bioaccumulation; chemical analysis; controlled study; drug penetration; electron spi
DOI:
10.1177/1091581810385149
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952677929&doi=10.1177%2f1091581810385149&partnerID=40&md5=05f5eb8be325dd3cd09f1b509eb55360
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952677929&doi=10.1177%2f1091581810385149&partnerID=40&md5=05f5eb8be325dd3cd09f1b509eb55360
Affiliations Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russian Federation; Ural State Economic University, Ekaterinburg, Russian Federation; Ural State University, Ekaterinburg, Russian Federation
Author Keywords magnetite; nanoparticles; subchronic toxicity
Chemicals/CAS ferric oxide, 1309-37-1, 56449-54-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; water, 7732-18-5; Ferrosoferric Oxide, 1317-61-9; Iron, 7439-89-6
References Oberdorster, G., Oberdorster, E., Oberdorster, J., Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles (2005) Environmental Health Perspectives, 113 (7), pp. 823-839. , DOI 10.1289/ehp.7339; Donaldson, K., Stone, V., Tran, C.K., Kreyling, W., Borm, P.J., Nanotoxicology (2004) Occup Environm Med, 61, pp. 727-728. , editorial; Bastus, N.G., Casals, E., Socorro, V.C., Puntes, V., Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media (2008) Nanotoxicology, 2 (3), pp. 99-112; Katsnelson, B.A., Privalova, L.I., Kuzmin, S.V., Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges - Are we defenseless against nanoparticles? (2010) Int J Occup Environ Health, 16, pp. 503-519; Warheit, D.B., Reed, K.L., Sayes, C.M., A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity (2009) Nanotoxicology, 3 (3), pp. 181-187; Sadauskas, E., Wallin, H., Stoltenberg, M., Kupfer cells are central in the removal of nanoparticles from the organism (2007) Part Fibre Toxicol, 4, p. 10; Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M.A., Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice (2010) Biochem Biophys Res Commun, 393 (4), pp. 649-655; Gubin, S.P., Koksharov, Y.A., Homutov, G.B., Yurkov, G.Y., Magnetic nanoparticles: Generating methods, structure, and properties (2005) Uspekhi Chimii, 74 (6), pp. 539-574. , in Russian; Rylova, M.L., (1964) Methods of Investigating Long-term Effects of Noxious Environmental Agents in Animal Experiments, p. 228. , Leningrad: Publishing House Meditsina; Abeyemi, O.O., Yemitan, O.K., Taiwo, A.E., Neurosedative and muscle-relaxant activities of ethyl acetate extract of Baphia nitida AFZEL (2006) J Ethnopharmacol, 106 (3), pp. 312-316; Fernandez, S.P., Wasowski, C., Loscalzo, L.M., Granger, R.E., Johnston, G.A.R., Paladini, A.C., Marder, M., Central nervous system depressant action of flavonoid glycosides (2006) European Journal of Pharmacology, 539 (3), pp. 168-176. , DOI 10.1016/j.ejphar.2006.04.004, PII S0014299906003967; Urbach, V.Yu., (1964) Biometric Methods (Statistical Treatment of Experimental Data in Biology, Agriculture, and Medicine), p. 415. , 2nd ed. Moscow: Publishing House Nauka; Yokel, R.A., Florence, R.L., Unrine, J.M., Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial (2009) Nanotoxicology, 3 (3), pp. 234-248; Pokharkar, V., Dhar, S., Bhumkar, D., Mali, V., Bjdhankar, S., Prasad, B.L., Acute and subacute toxicity studies of Chitosan reduced gold nanoparticles: A novel carrier for therapeutic agents (2009) Biomed Nanotechnol, 5 (3), pp. 233-239; Chen, Z., Meng, H., Xing, G., Acute toxicological effects of copper nanoparticles in vivo (2006) Toxicol Lett, 163 (2), pp. 109-120; Reis, C.P., Figueiredo, I.V., Carvalho, R.A., Jones, J., Nunes, P., Soares, A.F., Silva, C.F., Neufeld, R.J., Toxicological assessment of orally delivered nanoparticulate insulin (2008) Nanotoxicology, 2 (4), pp. 205-217. , DOI 10.1080/17435390802398309, PII 903535385; Wang, B., Feng, W.-Y., Wang, T.-C., Jia, G., Wang, M., Shi, J.-W., Zhang, F., Chai, Z.-F., Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice (2006) Toxicology Letters, 161 (2), pp. 115-123. , DOI 10.1016/j.toxlet.2005.08.007, PII S037842740500250X; Gillespie, P.A., Kang, G.S., Elder, A., Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: Short and long-term studies in mice (2010) Nanotoxicology, 4 (1), pp. 106-119; Yu, L.E., Yung, L.-Y.L., Ong, C.-N., Tan, Y.-L., Balasubramaniam, K.S., Hartono, D., Shui, G., Ong, W.-Y., Translocation and effects of gold nanoparticles after inhalation exposure in rats (2007) Nanotoxicology, 1 (3), pp. 235-242. , DOI 10.1080/17435390701763108, PII 787295187; Ho, J.J., Hee, J.J., Soo, K.S., Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats (2007) Inhal Toxicol, 19 (10), pp. 857-871; Filov, V.A., Biography of Nikolay Vasilievich Lazarev (2002) Int J Toxicol, 21 (4), pp. 235-236; Doss, M.O., Kühnel, A., Gross, U., Alcohol and porphyrin metabolism (2000) Alcohol Alcohol, 35 (2), pp. 109-122; Kumar, R., Roy, I., Ohulcanskky, T.Y., In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles (2010) ACS Nano, 4 (2), pp. 699-708; Johnston, H.J., Hutchison, G., Christensen, F.M., Peters, S., Hankin, S., Stone, V., A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for obszerved toxicity (2010) Crit Rev Toxicol, 40 (4), pp. 328-346; Bu, Q., Yan, G., Deng, P., NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration (2010) Nanotechnology, 21 (12), pp. 105-125
Correspondence Address Katsnelson, B. A.30 Popov Str., Ekaterinburg, 620014, Russian Federation; email: bkaznelson@etel.ru
CODEN IJTOF
PubMed ID 21398218
Language of Original Document English
Abbreviated Source Title Int. J. Toxicol.
Source Scopus