Stability in part of the variables of “partial” equilibria of systems with aftereffect / Vorotnikov V.I., Martyshenko Y.G. // Mathematical Notes. - 2014. - V. 96, l. 3-4. - P. 477-483.

ISSN:
00014346
Type:
Article
Abstract:
The problem of stability in part of the variables of a “partial” equilibrium (this means that a given part of the phase vector coordinates is zero) is considered for nonlinear nonstationary systems of functional differential equations with aftereffect. The notions of stability in part of the variables, which admit more general (compared with the known ones) assumptions about the values of the supremum-norm of the components of the initial vector function corresponding to the variables that do not determine the given equilibrium, are introduced. The stability and asymptotic stability conditions of the the type mentioned above are obtained in the context of the method of Lyapunov-Krasovskii functionals; this conditions allow generalization of several well-known results. © 2014, Pleiades Publishing, Ltd.
Author keywords:
functional differential equations with aftereffect; stability in part of the variables; “partial” equilibrium
Index keywords:
нет данных
DOI:
10.1134/S0001434614090223
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920139078&doi=10.1134%2fS0001434614090223&partnerID=40&md5=8811dc37c0ade955bc4d96dd8b35ba4f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920139078&doi=10.1134%2fS0001434614090223&partnerID=40&md5=8811dc37c0ade955bc4d96dd8b35ba4f
Affiliations Ural Federal University, Ekaterinburg, Russian Federation; Nizhnii Tagil Engineering Institute, Nizhnii Tagil, Russian Federation
Author Keywords functional differential equations with aftereffect; stability in part of the variables; “partial” equilibrium
References Krasovskii, N.N., (1959) Certain Problems in the Theory of Stability of Motion, , Fizmatgiz, Moscow:; Hale, J., Theory of Functional Differential Equations (1977) Appl. Math. Sci., , Springer-Verlag, New York:; Burton, T.A., Uniform asymptotic stability in functional differential equations (1978) Proc. Amer. Math. Soc., 68 (3), pp. 195-199; Andreev, A.S., The method of Lyapunov functionals in the problem of stability of functional differential equations (2009) Avtomat. i Telemekh., No. 9, pp. 4-55. , [Automat. Remote Control 70 (9), 1438–1486 (2009)]; Rumyantsev, V.V., Oziraner, A.S., (1987) Stability and Stabilization of Motion with Respect to Some of the Variables, , Nauka, Moscow:; Vorotnikov, V.I., (1998) Partial Stability and Control, , Birkhäuser Boston, Boston, MA:; Dashkovskii, S.N., Efimov, D.V., Sontag, É.D.D., Input-to-state stability and related properties of systems (2011) Avtomat. i Telemekh., No. 8, pp. 3-40. , [Automat. Remote Control 72 (8), 1579–1614 (2011)]; Bernfeld, S.R., Corduneanu, C., Ignatyev, A.O., On the stability of invariant sets of functional differential equations (2003) Nonlinear Anal., Theory Methods Appl., 55 (6), pp. 641-656; Ignatyev, A.O., On the partial equiasymptotic stability in functional-differential equations (2002) J. Math. Anal. Appl., 268 (2), pp. 615-628; Vorotnikov, V.I., Partial stability and control: the current state of the problem and future trends (2005) Avtomat. i Telemekh., No. 4, pp. 3-59. , [Automat. Remote Control 66 (4), 511–561 (2005)]; Karafyllis, I., Pepe, P., Jiang, Z.-P., Global output stability for systems described by retarded functional differential equations (2008) European J. Control, 14 (6), pp. 516-536; Vorotnikov, V.I., On the stability and the stability with respect to part of the variables of “partial” equilibrium positions of nonlinear dynamical systems (2003) Dokl. Ross. Akad. Nauk, 389 (3), pp. 332-337. , [Dokl. Math. 48(3), 151–155 (2003)]; Vorotnikov, V.I., Martyshenko, Y.G., On the theory of partial stability of nonlinear dynamical systems (2010) Izv. Ross. Akad. Nauk Teor. Sist. Upr., No. 5, pp. 23-31. , [J. Comput. Syst. Sci. Int. 49 (5), 702–709 (2010)]; Lin, Y., Sontag, E.D., Wang, Y.A., A smooth converse Lyapunov theorem for robust stability (1996) SIAM J. Control Optim., 34 (1), pp. 124-160; Kellett, C.M., Teel, A.R., Weak converse Lyapunov theorems and control-Lyapunov functions (2004) SIAM J. Control Optim., 42 (6), pp. 1934-1959; Efimov, D.V., (2005) Robust and Adaptive Control of Nonlinear Oscillations, , Nauka, St. Petersburg:
Correspondence Address Vorotnikov, V.I.; Ural Federal UniversityRussian Federation
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Math. Notes
Source Scopus