References |
Krasovskii, N.N., (1959) Certain Problems in the Theory of Stability of Motion, , Fizmatgiz, Moscow:; Hale, J., Theory of Functional Differential Equations (1977) Appl. Math. Sci., , Springer-Verlag, New York:; Burton, T.A., Uniform asymptotic stability in functional differential equations (1978) Proc. Amer. Math. Soc., 68 (3), pp. 195-199; Andreev, A.S., The method of Lyapunov functionals in the problem of stability of functional differential equations (2009) Avtomat. i Telemekh., No. 9, pp. 4-55. , [Automat. Remote Control 70 (9), 1438–1486 (2009)]; Rumyantsev, V.V., Oziraner, A.S., (1987) Stability and Stabilization of Motion with Respect to Some of the Variables, , Nauka, Moscow:; Vorotnikov, V.I., (1998) Partial Stability and Control, , Birkhäuser Boston, Boston, MA:; Dashkovskii, S.N., Efimov, D.V., Sontag, É.D.D., Input-to-state stability and related properties of systems (2011) Avtomat. i Telemekh., No. 8, pp. 3-40. , [Automat. Remote Control 72 (8), 1579–1614 (2011)]; Bernfeld, S.R., Corduneanu, C., Ignatyev, A.O., On the stability of invariant sets of functional differential equations (2003) Nonlinear Anal., Theory Methods Appl., 55 (6), pp. 641-656; Ignatyev, A.O., On the partial equiasymptotic stability in functional-differential equations (2002) J. Math. Anal. Appl., 268 (2), pp. 615-628; Vorotnikov, V.I., Partial stability and control: the current state of the problem and future trends (2005) Avtomat. i Telemekh., No. 4, pp. 3-59. , [Automat. Remote Control 66 (4), 511–561 (2005)]; Karafyllis, I., Pepe, P., Jiang, Z.-P., Global output stability for systems described by retarded functional differential equations (2008) European J. Control, 14 (6), pp. 516-536; Vorotnikov, V.I., On the stability and the stability with respect to part of the variables of “partial” equilibrium positions of nonlinear dynamical systems (2003) Dokl. Ross. Akad. Nauk, 389 (3), pp. 332-337. , [Dokl. Math. 48(3), 151–155 (2003)]; Vorotnikov, V.I., Martyshenko, Y.G., On the theory of partial stability of nonlinear dynamical systems (2010) Izv. Ross. Akad. Nauk Teor. Sist. Upr., No. 5, pp. 23-31. , [J. Comput. Syst. Sci. Int. 49 (5), 702–709 (2010)]; Lin, Y., Sontag, E.D., Wang, Y.A., A smooth converse Lyapunov theorem for robust stability (1996) SIAM J. Control Optim., 34 (1), pp. 124-160; Kellett, C.M., Teel, A.R., Weak converse Lyapunov theorems and control-Lyapunov functions (2004) SIAM J. Control Optim., 42 (6), pp. 1934-1959; Efimov, D.V., (2005) Robust and Adaptive Control of Nonlinear Oscillations, , Nauka, St. Petersburg: |