On partial detectability of the nonlinear dynamic systems / Vorotnikov V.I., Martyshenko Yu.G. // Automation and Remote Control. - 2009. - V. 70, l. 1. - P. 20-32.

ISSN:
00051179
Type:
Article
Abstract:
Conditions were obtained under which the uniform stability (uniform asymptotic stability) in one part of the variables of the zero equilibrium position of the nonlinear nonstationary system of ordinary differential equations implies the uniform stability (uniform asymptotic stability) of this equilibrium position relative to another, larger part of variables. Conditions were also obtained under which the uniform stability (uniform asymptotic stability) in one part of variables of the "partial" (zero) equilibrium position of the nonlinear nonstationary system of ordinary differential equations implies the uniform stability (uniform asymptotic stability) of this equilibrium position. These conditions complement a number of the well-known results of the theory of partial stability and partial detectability of the nonlinear dynamic systems. Application of the results obtained to the problems of partial stabilization of the nonlinear control systems was considered. © 2009 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Asymptotic analysis; Asymptotic stability; Control systems; Dynamic programming; Dynamical systems; Flow of fluids; Lyapunov methods; Motion control; Nonlinear control systems; Nonlinear equations; Or
DOI:
10.1134/S0005117909010020
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-59849099396&doi=10.1134%2fS0005117909010020&partnerID=40&md5=50a29b2f7529b4baca7cafc2e42e0d4d
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-59849099396&doi=10.1134%2fS0005117909010020&partnerID=40&md5=50a29b2f7529b4baca7cafc2e42e0d4d
Affiliations Ural State Technical University, Nizhni Tagil Technological Institute, Nizhni Tagil, Russian Federation
References Lyapunov, A.M., Studying a Special Case of the Motion Stability Problem (1956) Sobr. Soch. Vol. 2 (Collected Papers), pp. 272-331. , Akad. Nauk SSSR Moscow; Rumyantsev, V.V., On Stability of Motion in Part of Variables (1957) Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh. Fiz. Astron. Khim., (4), pp. 9-16; Rumyantsev, V.V., Oziraner, A.S., (1987) Ustoichivost' i Stabilizatsiya Dvizheniya Po Otnosheniyu K Chasti Peremennykh, , Nauka Moscow (Stability and Stabilization of Motion in Part of Variables); Vorotnikov, V.I., (1998) Partial Stability and Control, , Birkhauser Boston; Vorotnikov, V.I., Rumyantsev, V.V., (2001) Ustoichivost' i Upravlenie Po Chasti Koordinat Fazovogo Vektora Dinamicheskikh Sister: Teoriya, Metody i Prilozheniya, , Nauch. mir Moscow (Stability and Control in Part of Coordinates of the Phase Vector of Dynamic Systems: Theory, Methods, Applications); Vorotnikov, V.I., Partial stability and control: State-of-the-art and outlooks (2005) Avtom. Telemekh., (4), pp. 3-59; Sontag, E.D., Wang, Y., Output-to-state Stability and Detectability of Nonlinear Systems (1997) Syst. & Control Lett., 29, pp. 279-290. , 5; Sontag, E.D., (1998) Mathematical Control Theory: Deterministic Finite Dimensional Systems, , Springer New York; Sontag, E.D., Input to State Stability: Basic Concepts and Results (2007) Nonlinear Optim. Control Theory, pp. 163-220. , Springer Berlin; Shiriaev, A.S., Fradkov, A.L., Stabilization of Invariant Sets for Nonlinear Non-affine Systems (2000) Automatica, 36, pp. 1709-1715. , 11; Shiriaev, A.S., The Notion of V-detectability and Stabilization of Invariant Sets of Nonlinear Systems (2000) Syst. & Control Lett., 39, pp. 327-338. , 5; Ingalls, B.P., Sontag, E.D., Wang, Y., Measurement to error stability: A notion of partial detectability for nonlinear systems (2002) Proc. 2002 IEEE Conf. Decision Control, pp. 3946-3951. , Las Vegas; Peiffer, K., Rouche, N., Liapounov's Second Method Applied to Partial Stability (1969) J. Mecanique, 8, pp. 323-334. , 2; Khapaev, M.M., (1993) Averaging in Stability Theory, , Kluwer Dordrecht; Fradkov, A.L., Miroshnik, I.V., Nikiforov, V.O., (1999) Nonlinear and Adaptive Control of Complex Systems, , Kluwer Dordrecht; Vorotnikov, V.I., Two Classes of Prblems of Partial Stability: On Unification of Notions and Unique Solvability Conditions (2002) Dokl. Ross. Akad. Nauk, 384, pp. 47-51. , 1; Vorotnikov, V.I., On Stability and Stability in Part of Variables of the Partial Equilibrium Positions of the Nonlinear Dynamic Systems (2003) Dokl. Ross. Akad. Nauk, 389, pp. 332-337. , 3; Chellaboina, V., Haddad, V.M., A Unification between Partial Stability and Stability Theory for Time-varying Systems (2002) IEEE Control Syst. Magazine, 22, pp. 66-75. , 6; Lin, Y., Sontag, E.D., Wang, Y., A Smooth Converse Lyapunov Theorem for Robust Stability (1996) SIAM J. Control Optim., 34, pp. 124-160. , 1; Teel, A., Praly, L., A Smooth Lyapunov Function from a Class Kl-Estimate Involving Two Positive Semidefinite Functions (2000) ESAIM: Control, Optim. Calculus of Variat., 5, pp. 313-367; Efimov, D.V., (2005) Robastnoe i Adaptivnoe Upravlenie Nelineinymi Kolebaniyami, , Nauka St. Petersburg (Robust and Adaptive Control of Nonlinear Oscillations); Corduneanu, C., Sur la stabilite partielle (1964) Rev. Roum. Math. Pure Appl., 9, pp. 229-236. , 3; Savchenko, A.Ya., Ignat'Ev, A.O., (1989) Nekotorye Zadachi Ustoichivosti Neavtonomnykh Sister, , Naukova Dumka Kiev (Some Stability Problems of Nonautonomous Systems); Hatvani, L., On the Stability of the Solutions of Ordinary Differential Equations with Mechanical Applications (1990) Alkalm. Mat. Lap., 15, pp. 1-90. , 1/2; Andreev, A.S., Study of Partial Asymptotic Stability (1991) Prikl. Mat. Mekh., 54, pp. 539-547. , 4; Barbashin, E.A., Tabueva, V.A., (1969) Dinamicheskie Sistemy S Tsilindricheskim Fazovym Prostranstvom, , Nauka Moscow (Dynamic Systems with Cylindrical Phase Space); Halanay, A., (1966) Differential Equations: Stability, Oscillations, Time Lags, , Academic New York; Oziraner, A.S., On One Malkin-Masser Theorem (1979) Prikl. Mat. Mekh., 43, pp. 975-979. , 6; Vorotnikov, V.I., (1991) Ustoichivost' Dinamicheskikh Sister Po Otnosheniyu K Chasti Peremennykh, , Nauka Moscow (Stability of Dynamic Systems in Part of Variables)
Correspondence Address Vorotnikov, V. I.; Ural State Technical University, Nizhni Tagil Technological Institute, Nizhni Tagil, Russian Federation
Language of Original Document English
Abbreviated Source Title Autom. Remote Control
Source Scopus