References |
Rumyantsev, V.V., Partial stability of motion (1957) Vestn. Mask. Gos. Univ., Mat. Mekh. Fiz. Astron., Khim., (4), pp. 9-16; Zubov, V.I., (1959) Matematicheskie Melody Issledovaniya Sistem Avtomaticheskogo Regulirovaniya (Mathematical Research Methods for Automatic Control Systems), , Leningrad: Sudpromizdat; Corduneanu, C., Sur la stabilite partielle (1964) Rev. Roum. Math. Pure Appl., 9 (3), pp. 229-236; Matrosov, V.M., Advances of the Lyapunov functions method in stability theory (1965) Trudy II Vses. S"ezda Po Tear, Prikl. Mekh. (Proc. II All-union Congress on Appl. Mech. Theory), 1, pp. 112-125. , Moscow; Halanay, A., (1966) Differential Equations: Stability, Oscillations, Time Lags, , New York: Academic; Peiffer, K., Rouche, N., Liapounov's second method applied to partial stability (1969) J. Mech., 8 (2), pp. 323-334; Risito, C., Sulla Stabilita Asintotica Parziale (1970) Ann. Math. Pura Appl., 84, pp. 279-292; Khapaev, M.M., (1986) Usrednenie v Teorii Ustoichivosti (Averaging in Stability Theory), , Moscow: Nauka; Rumyantsev, V.V., Oziraner, A.S., (1987) Ustoichivost' i Stabilizatsiya Dvizheniya po Otnosheniyu k Chasti Peremennykh (Partial Stability and Stabilization of Motion), , Moscow: Nauka; Savchenko, A.Ya., Ignat'ev, A.O., (1989) Nekotorye Zadachi Ustoichivosti Neavtonomnykh Sistem (Certain Problems in the Stability of Nonautonomous Systems), , Kiev: Naukova Dumka; Hatvani, L., On the stability of the solutions of ordinary differential equations with mechanical applications (1990) Alkalm. Mat. Lap., 15 (1-2), pp. 1-90; Andreev, A.S., An investigation into asymptotic stability (1991) Prikl. Mat. Mekh., 54 (4), pp. 539-547; Vorotnikov, V.I., (1991) Ustoichivost' Dinamicheskikh Sistem po Otnosheniyu k Chasti Peremennykh (Partial Stability of Dynamic Systems), , Moscow: Nauka; Khapaev, M.M., (1993) Averaging in Stability Theory, , Dordrecht: Kluwer; Vorotnikov, V.I., Problems and methods in partial stability and stabilization of motion: Reserach trends, results, and specifics (1993) Avtom. Telemekh., (3), pp. 3-62; Vorotnikov, V.I., (1998) Partial Stability and Control, , Boston: Birkhauser; Pradkov, A.L., Miroshnik, I.V., Nikiforov, V.O., (1999) Nonlinear and Adaptive Control of Complex Systems, , Dordrecht: Kluwer; Vorotnikov, V.I., Partial stability (1999) Prikl. Mat. Mekh., 63 (5), pp. 736-745; Ignat'ev, A.O., Equiasymptotic partial stability (1999) Prikl. Mat. Mekh., 63 (5), pp. 871-875; Vorotnikov, V.I., Rumyantsev, V.V., (2001) Ustoichivost' i Upravlenie po Chasti Koordinat Fazovogo Vektora Dinamicheskikh Sistem: Teoriya Metody i Prilozhemiya (Partial Stability and Control of Dynamic Systems by Phase Vector Coordinates: Theory, Methods, and Applications), , Moscow: Nauchnii Mir; Chellaboina, V., Haddad, W.M., A unification between partial stability and stability theory for time-varying systems (2002) IEEE Control Systems Magazine, 22 (6), pp. 66-75. , Erratum: IEEE Control Systems Magazine, 2003, vol. 23, no. 1, p. 103; Vorotnikov, V.I., Two classes of partial stability problems: Unification of concepts and unified solvability conditions (2002) Dokl. Ross. Akod. Nauk, 384 (1), pp. 47-51; Miroshnik, I.V., Partial stability and geometric problems of nonlinear dynamics (2002) Avtom. Telemekh., 63 (11), pp. 39-56; Michel, A.N., Molchanov, A.P., Sun, Y., Partial stability and boundedness of general dynamical systems on metric spaces (2003) Nonlin. Analysis: TMA, 52 (4), pp. 1295-1316; Vorotnikov, V.I., Stability and partial stability of partial equilibrium positions of nonlinear dynamic systems (2003) Dokl. Ross. Akad. Nauk, 389 (3), pp. 332-337; Rumyantsev, V.V., Partial asymptotic stability and instability of motion (1971) Prikl. Mat. Mekh., 35 (1), pp. 147-152; Oziraner, A.S., Certain theorems on the second Lyapunov method (1972) Prikl. Mat. Mekh., 36 (3), pp. 396-404; Oziraner, A.S., Partial asymptotic stability and instability (1973) Prikl. Mat. Mekh., 37 (4), pp. 659-665; Lakshmikantham, V., Leela, S., Martynyuk, A.A., (1989) Stability Analysis of Nonlinear Systems, , New York: Marcel Dekker; Lakshmikantham, V., Liu, X.Z., (1993) Stability Analysis in Terms of Two Measures, , Singapure: World Scientific; Vuiichich, V., Kozlov, V.V., The Lyapunov problem of stability in terms of given state functions (1991) Prikl. Mat. Mekh., 55 (4), pp. 555-559; Martynyuk, A.A., (1998) Stability by Liapunov's Matrix Function Method with Applications, , New York: Marcel Dekker; Sontag, E.D., Wang, Y., A notion of input to output stability (1997) Proc. Eur. Contr. Conf., , Brussels, Papers WE-E-A2; Sontag, E.D., Wang, Y., Notions of input to output stability (1999) Syst. Control Lett., 38 (4-5), pp. 235-248; Massera, I.L., On Liapounoff's condition of stability (1949) Ann. Math., 50 (3), pp. 705-721; Peiffer, K., (1968) La Methode de Liapunoff Appliqúee á I Edúte de la Stabilite Partielle, , Louvain: Université Catholique de Louvain; Ignatyev, A.O., On the partial equiasymptotic stability in functional-differential equations (2002) J. Math. Anal. Appl., 268 (2), pp. 615-628; Kolmogorov, A.N., Fomin, S.V., (1989) Elementy Teorii Funktsii i Funktsional'nogo Analiza (Elements of Theory of Functions and Functional Analysis), , Moscow: Nauka; Lin, Y., (1992) Lyapunov Functions Techniques for Stabilization, , PhD Dissertation, Rutgers University, New Brunswick, New Jersey, USA; Lin, Y., Sontag, E.D., Wang, Y., A smooth converse Lyapunov theorem for robust stability (1996) SIAM J. Contr. Optimiz., 34 (1), pp. 124-160; Teel, A., Praly, L., A smooth Lyapounov function from a class of KL-estimate involving two positive semidefinite functions (2000) ESAIM: Contr., Optimiz. Calculus of Variations, 5, pp. 313-367 |