Estimation of an admissible domain of uncontrolled disturbances during reorientation of an asymmetric rigid body / Vorotnikov V.I. // Cosmic Research. - 2001. - V. 39, l. 3. - P. 275-281.

ISSN:
00109525
Type:
Article
Abstract:
A nonlinear game problem of the reorientation of an asymmetric rigid body is considered for the case of uncontrolled disturbances, only their estimates being known. The domain of admissible controls is limited by an ellipsoid or a sphere. In the case of a sphere, the limitation corresponds to a pair of swiveling (vernier) engines. A method [1-4] of solving this problem is developed based on "equivalent linearization" of nonlinear conflict-controlled systems. Direct estimates are found of the admissible (with respect to executing a reorientation) domain of uncontrolled disturbances, as a function of both the given constraints on the controls and the initial location of the body. These estimates are convenient at the first stage of a solution process, when the possibility is determined of using the controls proposed in [1-4] in order to support the necessary reorientation. If the aforementioned estimates are satisfied with a safety margin, then (at the second stage of the solution) a particular value of the guaranteed time of reorientation can be found by iteration algorithms [1-4]. The results of calculations are presented. © 2001 MAIK "Nauka/Interperiodica".
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144556468&partnerID=40&md5=a847e77e1de57b5908724bd952a1a29f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-27144556468&partnerID=40&md5=a847e77e1de57b5908724bd952a1a29f
Affiliations Ural State Technological University, Nizhnii Tagil Institute, ul. Krasnogvardeiskaya 59, Niznii Tagil, 622031, Russian Federation
References Vorotnikov, V.I., On Control of the Angular Motion of Solid Bodies. A Game Approach (1994) Prikl. Mat. Mekh., 58 (3), pp. 82-103; Vorotnikov, V.I., On Bounded Control Construction in a Game-Theoretic Problem of Controlling the Angular Motion of an Asymmetric Solid (1997) Proc. 1st Int. Conf. on Control of Oscillations and Chaos, 2, pp. 307-308. , Chernousko, F.L. and Fradkov, A.L., Eds., St. Petersburg, August 27-29; Vorotnikov, V.I., On a Synthesis of Limited Control in a Game Problem of Reorientation of an Asymmetric Solid Body (1995) Dokl. Ross. Akad. Nauk, 343 (5), pp. 630-634; Vorotnikov, V.I., (1998) Partial Stability and Control, , Boston: Birkhauser; Krasovskii, N.N., (1970) Igrovye Zadachi o Vstreche Dvizhenii (Game Problems on a Motion Meeting), , Moscow: Nauka; Vorotnikov, V.I., Nonlinear Synthesis of Limited Controls under Interferences (1994) Dokl. Akad. Nauk, 337 (1), pp. 44-47; Vorotnikov, V.I., Construction of the Limited Game Controls for Nonlinear Dynamical Systems (1997) Prikl. Mat. Mekh., 61 (1), pp. 63-74; Chernousko, F.L., Decomposition and Sub-Optimal Control in Dynamical Systems (1990) Prikl. Mat. Mekh., 54 (6), pp. 883-893; Chernousko, F.L., Decomposition and Sub-Optimal Control in Dynamical Systems (1993) Izv. Ross. Akad. Nauk, Tekh. Kibern., (1), pp. 209-214; Anan'evskii, I.M., Dobrynina, I.S., Chernousko, F.L., The Decomposition Method in the Problem of Mechanical System Control (1995) Izv. Ross. Akad. Nauk, Teor. Sist. Upr., (2), pp. 3-14; Vorotnikov, V.I., On the Stability and Stabilization of Motion with Respect to a Part of Variables (1982) Prikl. Mat. Mekh., 46 (6), pp. 914-923; Vorotnikov, V.I., (1991) Ustoichivost' Dinamicheskikh Sistem po Otnosheniyu k Chasti Peremennykh (Stability of Dynamical Systems with Respect to a Part of Variables), , Moscow: Nauka; Rumyantsev, V.V., Oziraner, A.S., (1987) Ustoichivost' i Stabilizatsiya Dvizheniya po Otnosheniyu k Chasti Peremennykh (Stability and Stabilization of Motion in a Part of Variables), , Moscow: Nauka; Akulenko, L.D., (1987) Asimptoticheskie Metody Optimal' Nogo Upravleniya (Asymptotic Methods of Optimal Control), , Moscow: Nauka; Vorotnikov, V.I., Problems and Methods of Studying the Stability and Stabilization of Motion with Respect to a Part of Variables: The Lines of Research, Results, and Features (1993) Avtom. Telemekh., (3), pp. 3-62; Akulenko, L.D., (1994) Problems and Methods of Optimal Control, , Dordrecht: Kluwer Academic Publ; Vorotnikov, V.I., Evaluation of Permissible Interference Levels in the Game Problems of Reorientation of Asymmetric Solids (1999) Izv. Ross. Akad. Nauk, Teor. Sist. Upr., (3), pp. 53-59; Athans, M., Falb, P.L., (1966) Optimal Control, , New York: McGraw-Hill; (1968) Optimal'noe Upravlenie, , Moscow: Mashinostroenie; Lur'e, A.M., (1961) Analiticheskaya Mekhanika (Analytical Mechanics), , Moscow: Gos. Izd. Fiz. Mat. Lit; Corless, M., Leitmann, G., Exponential Convergence for Uncertain Systems with Component-Wise Bounded Controllers (1995) Eng. Autom., 3-4, pp. 14-28; Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F., (1983) Matematicheskaya Teoriya Optimal'nykh Protsessov, , Moscow: Nauka; (1986) The Mathematical Theory of Optimal Processes, , New York: Gordon and Breach; Krasovskii, A.A., (1987) Spravochnik po Teorii Avtomaticheskogo Upravleniya (A Handbook on the Automatic Control Theory), , Moscow: Nauka
Correspondence Address Vorotnikov, V.I.; Ural State Technological University, Nizhnii Tagil Institute, ul. Krasnogvardeiskaya 59, Niznii Tagil, 622031, Russian Federation
Language of Original Document English
Abbreviated Source Title Cosm. Res.
Source Scopus