Problems of stability with respect to part of the variables / Vorotnikov V.I. // Journal of Applied Mathematics and Mechanics. - 1999. - V. 63, l. 5. - P. 695-703.

ISSN:
00218928
Type:
Article
Abstract:
The Lyapunov-Malkin theorem on stability and (simultaneously) exponential asymptotic stability with respect to part of the variables in the linear approximation in critical cases (in Lyapunov's sense) has served as a point of departure for various previous results. These results are strengthened by relaxing all additional assumptions (other than continuity) regarding the coefficients of the linear part of the non-linear system under consideration. The result is extended to the problem of polystability with respect to part of the variables. In addition, a method for narrowing down the admissible domain of variation of "uncontrollable" variables is worked out as applied to problems of asymptotic stability with respect to part of the variables. Examples are considered. © 2000 Elsevier Science Ltd. All rights reserved.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033233733&partnerID=40&md5=09c1e45b669c9430a1681b3d677356e0
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033233733&partnerID=40&md5=09c1e45b669c9430a1681b3d677356e0
References Lyapunov, A.M., Investigation of one of the special cases of the problem of stability of motion (1956) Collected Papers, 2, pp. 272-331. , Izd. Akad. Nauk SSSR, Moscow; Rumyantsev, V.V., The Stability of Motion with Respect to Part of the Variables (1957) Vestnik Moskov. Gos. Univ., Ser. Mat., Mekh., Astron., Fiz., Khim., 4, pp. 9-16; Rumyantsev, V.V., Oziraner, A.S., (1987) Stability and Stabilization of Motion with Respect to Part of the Variables, , Nauka, Moscow; Hatvani, L., On the stability of the solutions of ordinary differential equations with mechanical applications (1990) Alkalm. Mat. Lap., 15 (1-2), pp. 1-90; Andreyev, A.S., The investigation of partial asymptotic stability (1991) Prikl. Mat. Mekh., 55 (4), pp. 539-547; Vorotnikov, V.I., (1991) Stability of Dynamical Systems with Respect to Part of the Variables, , Nauka, Moscow; Vorotnikov, V.I., Problems and methods for investigating stability and stabilization of motion with respect to part of the variables: Research trends, results and special features (1993) Avtomatika i Telemekhanika, 3, pp. 3-62; Vorotnikov, V.I., (1998) Partial Stability and Control, , Birkhauser, Boston; Movchan, A.A., Stability of processes with respect to two metrics (1960) Prikl. Mat. Mekh., 24 (6), pp. 988-1001; Sirazetdinov, T.K., (1987) Stability of Systems with Distributed Parameters, , Nauka, Novosibirsk; Lakshikantham, V., Leela, S., Martynyuk, A.A., (1989) Stability Analysis of Nonlinear Systems, , Dekker, New York; Vujicic, V.A., Kozlov, V.V., Lyapunov's problem of stability relative to given state functions (1991) Prikl. Mat. Mekh., 55 (4), pp. 555-559; Aminov, A.B., Sirazetdinov, T.K., The Lyapunov function method in problems of polystability of motion (1987) Prikl. Mat. Mekh., 51 (5), pp. 709-716; Martynyuk, A.A., Polystability - A new direction in the analysis of non-linear systems (a survey) (1994) Prikl. Mekh., 30 (5), pp. 3-17; Oziraner, A.S., The stability of motion in critical cases (1975) Prikl. Mat. Mekh., 39, pp. 415-421; Oziraner, A.S., The stability of unsteady motions in the first approximation (1976) Prikl. Mat. Mekh., 40 (3), pp. 424-430; Malkin, I.G., (1966) Theory of Stability of Motion, , Nauka, Moscow; Vorotnikov, V.I., The theory of stability with respect to part of the variables (1995) Prikl. Mat. Mekh., 59 (4), pp. 553-561; Salvadori, L., Sul problema della stabilita asintotica (1972) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. e Natur., 53 (1-2), pp. 35-38; Salvadori, L., Some contributions to asymptotic stability theory (1974) Ann. Soc. Sci., Ser. I, 88 (2), pp. 183-194. , Bruxelle; Marachkov, V.P., On a stability theorem (1940) Izv. Fiz.-mat. Obshch. I Nauch.-issl. Inst. Mat. Mekh. Pri Kazan. Univ., Ser. 3, 12, pp. 171-174; Corduneanu, C., Some problems concerning partial stability (1971) Symp. Math., 6, Meccanica Non-lineare e Stabilita, pp. 141-154. , Academic Press, London; Perron, O., Die Stabilitätsfrage bei Differentialgleichungen (1930) Math. Z., 32 (5), pp. 703-728; Rumyantsev, V.V., (1967) The Stability of Steady Motions of Space Satellites, , Vychisl. Tsentr Akad. Nauk SSSR, Moscow; Zubov, V.I., (1975) Lectures on Control Theory, , Nauka, Moscow; Krementulo, V.V., (1977) Stabilization of the Steady Motions of a Rigid Body by Means of Rotating Masses, , Nauka, Moscow; Kalman, R.E., Falb, P.L., Arbib, M.A., (1969) Topics in Mathematical System Theory, , McGraw-Hill, New York; Raushenbakh, B.V., Tokar', Ye.N., (1974) Control of Spacecraft Orientations, , Nauka, Moscow; Corduneanu, C., Sur la Stabilité Partielle (1964) Rev. Roum. Math. Pure et Appl., 9 (3), pp. 229-236; Pfeiffer, K., Rouchen, N., Liapounov's second method applied to partial stability (1969) J. Mech., 8 (2), pp. 323-334; Vorotnikov, V.I., Theorems of the Barbashin-Krasovskii type in problems of stability with respect to part of the variables (1997) Dokl. Ross. Akad. Nauk., 354 (4), pp. 481-484; Risito, C., Sulla stabilità asintotica parziale (1970) Am. Math. Pura Ed Appl., 84, pp. 279-292; Krasovskii, N.N., (1959) Some Problems of the Theory of the Stability of Motion, , Fizmatgiz, Moscow
CODEN JAMMA
Language of Original Document English
Abbreviated Source Title J. Appl. Math. Mech.
Source Scopus