Effect of the high-order resonances on the orbital evolution of objects near geostationary orbit / Kuznetsov E.D., Zakharova P.E., Glamazda D.V., Kudryavtsev S.O. // Solar System Research. - 2014. - V. 48, l. 6. - P. 446-459.

ISSN:
00380946
Type:
Article
Abstract:
The area-to-mass ratio of high-orbit space objects is estimated on the basis of positional observations from the SBG telescope at the Kourovka astronomical observatory of the Ural Federal University. The properties of regions where high-order resonances are located are analyzed. The position and sizes of the resonance zones depending on the area-to-mass ratio of objects are determined on the basis of numerical modeling. It is shown that a system transits through the high-order resonances due to secular perturbations of the semimajor axis under the Poynting-Robertson effect. The high-order resonances weakly influence the formation of the stochastic trajectories. The stochastic properties are mostly manifested in evolution of the semimajor axis of the orbit. © 2014, Pleiades Publishing, Inc.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S0038094614060045
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920994566&doi=10.1134%2fS0038094614060045&partnerID=40&md5=0f5615bec259bd341d5e77d0e5b46ce1
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920994566&doi=10.1134%2fS0038094614060045&partnerID=40&md5=0f5615bec259bd341d5e77d0e5b46ce1
Affiliations Ural Federal University, ul. Mira 19, Yekaterinburg, Russian Federation
Funding Details 13-02-00026-a, RFBR, Russian Foundation for Basic Research
References Aksenov, E.P., (1977) Teoriya dvizheniya iskusstvennykh sputnikov Zemli, , Nauka, Moscow: (The Theory for Artificial Earth Satellites Motion); Allan, R.R., Resonance effects due to the longitude dependence of the gravitational field of a rotating primary (1967) Planet. Space Sci., 15, pp. 53-76; Allan, R.R., Satellites resonance with the longitude-dependent gravity. II. Effects involving the eccentricity (1967) Planet. Space Sci., 15, pp. 1829-1845; Beutler, G., (2005) Methods of Celestial Mechanics, , Springer-Verlag, BerlinHeidelberg:; Bordovitsyna, T.V., (1984) Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki, , Nauka, Moscow: (Modern Numerical Methods in the Problems on Celestial Mechanics); Bordovitsyna, T.V., Sharkovsky, N.A., On calculation of relativistic effects in numerical prediction of the artificial satellite motion (1986) Proc. Symp. Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Theories and Observational Verifications. Leningrad, USSR, May 28–31, 1985, pp. 283-288. , D. Reidel Publ., Dordrecht:; Bordovitsyna, T.V., Baturin, A.P., Avdyushev, V.A., Kulikova, P.V., Numerical model of artificial Earth satellite motion. New version (2007) Izv. Vyssh. Uchebn. Zaved., Fiz., 50 (12-2), pp. 60-65; Brillinger, D., (1975) Time Series: Data Analysis and Theory, , Holt, Reinhart and Winston, New York:; Früh, C., Schildknecht, T., Variation of the area-to-mass ratio of high area-to-mass ratio space debris objects (2012) Mon. Notic. Roy. Astron. Soc., 419, pp. 3521-3528; Gedeon, G.S., Tesseral resonance effects on satellite orbits (1969) Celest. Mech., 1, pp. 167-189; Glamazda, D.V., SBG camera of Kourovskaya astronomical observatory (2012) Astrofiz. Byull., 67 (2), pp. 242-248; Glamazda, D.V., The main algorithms for SBG camera control in Kourovskaya astronomical observatory (2012) Astrofiz. Byull., 67 (2), pp. 249-256; Hubaux, C., Lemaître, A., The impact of Earth’s shadow on the long-term evolution of space debris (2013) Celest. Mech. Dyn. Astron., 116, pp. 79-95; Kuznetsov, E.D., Kudryavtsev, A.O., (2009) Prediction accurate of geosynchronized satellites motion during longterm periods of time, Russian physics journal, 52 (8), pp. 841-849; Kuznetsov, E.D., Zakharova, P.E., Software complex for processing permanent artificial Earth satellites observation at SBG telescope in Kourovskaya astronomical observatory (2010) Okolozemnaya astronomiya-2009. Sb. trudov konf. Kazan’, 22–26 avgusta 2009 g., pp. 267-269. , GEOS, Moscow: (Proc. Conf. near-Earth Astronomy-2009. Kazan, Aug. 22–26, 2009); Kuznetsov, E.D., The effect of the radiation pressure on the orbital evolution of geosynchronous objects (2011) Solar Syst. Res., 45 (5), pp. 433-446; Kuznetsov, E.D., Zakharova, P.E., Glamazda, D.V., Shagabutdinov, A.I., Kudryavtsev, S.O., Features of orbital evolution of Earth’s satellites with large windage near low-order resonance (2011) Vestn. Sib. Gos. Aerokosm. Univ. im. Akad. M.F. Reshetneva, pp. 148-151; Kuznetsov, E.D., Zakharova, P.E., Glamazda, D.V., Shagabutdinov, A.I., Kudryavtsev, S.O., Light pressure effect on the orbital evolution of objects moving in the neighborhood of low-order resonances (2012) Solar Syst. Res., 46 (6), pp. 442-449; Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Olson, T.R., The development of the joint NASA GSFC and National Imagery and Mapping Agency (NIMA) geopotential model EGM96 (1998) NASA/TP-1998-206861; McMahon, J., Scheeres, D., Secular orbit variation due to solar radiation effects: a detailed model for BYORP (2010) Celest. Mech. Dyn. Astron., 106, pp. 261-300; Polyakhova, E.N., (1986) Kosmicheskii polet s solnechnym parusom: problemy i perspektivy, , Nauka, Moscow: (Space Flight with Solar Sail: Problems and Trends); Slabinski, V.J., Poynting-Robertson drag on satellites near synchronous altitude (1980) Bull. Am. Astron. Soc., 12, p. 741; Slabinski, V.J., Poynting-Robertson force allowing for wavelength-dependent reflection coefficients and nonspherical shapes (1983) Bull. Am. Astron. Soc., 15, p. 869; Smirnov, M.A., Mikisha, A.M., Centurial evolution of high-orbit space objects under light pressure (1993) Problema zagryazneniya kosmosa (kosmicheskii musor), pp. 126-142. , Kosmosinform, Moscow: (The Problem of Space Pollution (Space Debris)); Smirnov, M.A., Mikisha, A.M., Centurial evolution of high-orbit space objects under space pressure. Part II. The way to determine parameters that characterize light pressure action onto geosynchronized satellites according to photometry observations (1995) Stolknoveniya v okolozemnom prostranstve (kosmicheskii musor), pp. 252-271. , Kosmosinform, Moscow: (Collisions in Near-Earth Space (Space Debris)); Sochilina, A.S., On the motion of a satellite in resonance with its rotating planet (1982) Celest. Mech., 26, pp. 337-352; Timoshkova, E.I., Kholshevnikov, K.V., Lunar-Sun perturbations in planet satellites motion (1974) Uch. Zapiski Leningrad. Gos. Univ., pp. 141-156; Tueva, O.N., Avdyushev, V.A., Light pressure and Poynting-Robertson effect onto space debris dynamics (2006) Okolozemnaya astronomiya-2005: Sb. trudov konf, pp. 261-267. , Nefed’ev YuA, Rykhlova LV, Smirnov MA, Bakanas ES, (eds), Kazan State Univ., Kazan: (Proc. Conf. near-Earth Astronomy-2005); Vashkov’yak, M.A., Evolution of special elliptic orbits of synchronized artificial Earth’s satellites (1991) Kosm. Issl., 29, pp. 133-144; Wytrzyszczak, I., Breiter, S., Borczyk, W., Regular and chaotic motion of high altitude satellites (2007) Adv. Space Res., 40, pp. 134-142
Correspondence Address Kuznetsov, E.D.; Ural Federal University, ul. Mira 19, Russian Federation
Publisher Maik Nauka Publishing / Springer SBM
Language of Original Document English
Abbreviated Source Title Sol. Syst. Res.
Source Scopus