References |
Aksenov, E.P., (1977) Teoriya dvizheniya iskusstvennykh sputnikov Zemli, , Nauka, Moscow: (The Theory for Artificial Earth Satellites Motion); Allan, R.R., Resonance effects due to the longitude dependence of the gravitational field of a rotating primary (1967) Planet. Space Sci., 15, pp. 53-76; Allan, R.R., Satellites resonance with the longitude-dependent gravity. II. Effects involving the eccentricity (1967) Planet. Space Sci., 15, pp. 1829-1845; Beutler, G., (2005) Methods of Celestial Mechanics, , Springer-Verlag, BerlinHeidelberg:; Bordovitsyna, T.V., (1984) Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki, , Nauka, Moscow: (Modern Numerical Methods in the Problems on Celestial Mechanics); Bordovitsyna, T.V., Sharkovsky, N.A., On calculation of relativistic effects in numerical prediction of the artificial satellite motion (1986) Proc. Symp. Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Theories and Observational Verifications. Leningrad, USSR, May 28–31, 1985, pp. 283-288. , D. Reidel Publ., Dordrecht:; Bordovitsyna, T.V., Baturin, A.P., Avdyushev, V.A., Kulikova, P.V., Numerical model of artificial Earth satellite motion. New version (2007) Izv. Vyssh. Uchebn. Zaved., Fiz., 50 (12-2), pp. 60-65; Brillinger, D., (1975) Time Series: Data Analysis and Theory, , Holt, Reinhart and Winston, New York:; Früh, C., Schildknecht, T., Variation of the area-to-mass ratio of high area-to-mass ratio space debris objects (2012) Mon. Notic. Roy. Astron. Soc., 419, pp. 3521-3528; Gedeon, G.S., Tesseral resonance effects on satellite orbits (1969) Celest. Mech., 1, pp. 167-189; Glamazda, D.V., SBG camera of Kourovskaya astronomical observatory (2012) Astrofiz. Byull., 67 (2), pp. 242-248; Glamazda, D.V., The main algorithms for SBG camera control in Kourovskaya astronomical observatory (2012) Astrofiz. Byull., 67 (2), pp. 249-256; Hubaux, C., Lemaître, A., The impact of Earth’s shadow on the long-term evolution of space debris (2013) Celest. Mech. Dyn. Astron., 116, pp. 79-95; Kuznetsov, E.D., Kudryavtsev, A.O., (2009) Prediction accurate of geosynchronized satellites motion during longterm periods of time, Russian physics journal, 52 (8), pp. 841-849; Kuznetsov, E.D., Zakharova, P.E., Software complex for processing permanent artificial Earth satellites observation at SBG telescope in Kourovskaya astronomical observatory (2010) Okolozemnaya astronomiya-2009. Sb. trudov konf. Kazan’, 22–26 avgusta 2009 g., pp. 267-269. , GEOS, Moscow: (Proc. Conf. near-Earth Astronomy-2009. Kazan, Aug. 22–26, 2009); Kuznetsov, E.D., The effect of the radiation pressure on the orbital evolution of geosynchronous objects (2011) Solar Syst. Res., 45 (5), pp. 433-446; Kuznetsov, E.D., Zakharova, P.E., Glamazda, D.V., Shagabutdinov, A.I., Kudryavtsev, S.O., Features of orbital evolution of Earth’s satellites with large windage near low-order resonance (2011) Vestn. Sib. Gos. Aerokosm. Univ. im. Akad. M.F. Reshetneva, pp. 148-151; Kuznetsov, E.D., Zakharova, P.E., Glamazda, D.V., Shagabutdinov, A.I., Kudryavtsev, S.O., Light pressure effect on the orbital evolution of objects moving in the neighborhood of low-order resonances (2012) Solar Syst. Res., 46 (6), pp. 442-449; Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Olson, T.R., The development of the joint NASA GSFC and National Imagery and Mapping Agency (NIMA) geopotential model EGM96 (1998) NASA/TP-1998-206861; McMahon, J., Scheeres, D., Secular orbit variation due to solar radiation effects: a detailed model for BYORP (2010) Celest. Mech. Dyn. Astron., 106, pp. 261-300; Polyakhova, E.N., (1986) Kosmicheskii polet s solnechnym parusom: problemy i perspektivy, , Nauka, Moscow: (Space Flight with Solar Sail: Problems and Trends); Slabinski, V.J., Poynting-Robertson drag on satellites near synchronous altitude (1980) Bull. Am. Astron. Soc., 12, p. 741; Slabinski, V.J., Poynting-Robertson force allowing for wavelength-dependent reflection coefficients and nonspherical shapes (1983) Bull. Am. Astron. Soc., 15, p. 869; Smirnov, M.A., Mikisha, A.M., Centurial evolution of high-orbit space objects under light pressure (1993) Problema zagryazneniya kosmosa (kosmicheskii musor), pp. 126-142. , Kosmosinform, Moscow: (The Problem of Space Pollution (Space Debris)); Smirnov, M.A., Mikisha, A.M., Centurial evolution of high-orbit space objects under space pressure. Part II. The way to determine parameters that characterize light pressure action onto geosynchronized satellites according to photometry observations (1995) Stolknoveniya v okolozemnom prostranstve (kosmicheskii musor), pp. 252-271. , Kosmosinform, Moscow: (Collisions in Near-Earth Space (Space Debris)); Sochilina, A.S., On the motion of a satellite in resonance with its rotating planet (1982) Celest. Mech., 26, pp. 337-352; Timoshkova, E.I., Kholshevnikov, K.V., Lunar-Sun perturbations in planet satellites motion (1974) Uch. Zapiski Leningrad. Gos. Univ., pp. 141-156; Tueva, O.N., Avdyushev, V.A., Light pressure and Poynting-Robertson effect onto space debris dynamics (2006) Okolozemnaya astronomiya-2005: Sb. trudov konf, pp. 261-267. , Nefed’ev YuA, Rykhlova LV, Smirnov MA, Bakanas ES, (eds), Kazan State Univ., Kazan: (Proc. Conf. near-Earth Astronomy-2005); Vashkov’yak, M.A., Evolution of special elliptic orbits of synchronized artificial Earth’s satellites (1991) Kosm. Issl., 29, pp. 133-144; Wytrzyszczak, I., Breiter, S., Borczyk, W., Regular and chaotic motion of high altitude satellites (2007) Adv. Space Res., 40, pp. 134-142 |