Defect structure and related properties of mayenite Ca12Al14O33 / Tsvetkov D.S., Steparuk A.S., Zuev A.Y. // Solid State Ionics. - 2015. - V. 276, l. . - P. 142-148.

ISSN:
01672738
Type:
Article
Abstract:
Abstract For the first time, the defect structure of mayenite was developed on the basis of conventional Kröger-Vink method and successfully verified using available data on its properties such as total conductivity, hydration/dehydration and oxidation/reduction. As a consequence, equilibrium constants of the quasichemical reactions of mayenite reduction and hydration were determined as a function of temperature. This allowed estimation of Ca12Al14O33 - δ enthalpy of reduction and hydration. The former was found to be equal to 360 kJ/mol while the latter was estimated as - 238 kJ/mol. The defect structure model proposed enabled estimation of oxygen nonstoichiometry in mayenite. © 2015 Elsevier B.V. All rights reserved.
Author keywords:
Defect structure; Hydration; Mayenite; Oxide ion conductivity; Oxygen nonstoichiometry; Total conductivity
Index keywords:
Calcium; Defect structures; Defects; Equilibrium constants; Hydration; Oxygen; Hydration/dehydration; Mayenite; Oxide-ion conductivity; Oxygen non-stoichiometry; Quasi-chemical; Aluminum
DOI:
10.1016/j.ssi.2015.04.003
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928740275&doi=10.1016%2fj.ssi.2015.04.003&partnerID=40&md5=d7c67a7ffd94c2da6e8031148ca8094f
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 13644
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928740275&doi=10.1016%2fj.ssi.2015.04.003&partnerID=40&md5=d7c67a7ffd94c2da6e8031148ca8094f
Affiliations Department of Chemistry, Institute of Natural Sciences, Lenin Av. 51, Ekaterinburg, Russian Federation
Author Keywords Defect structure; Hydration; Mayenite; Oxide ion conductivity; Oxygen nonstoichiometry; Total conductivity
Funding Details 13-03-96118, RFBR, Russian Foundation for Basic Research
References Hentschel, G., (1964) Neues Jahrb. Mineral. Monatshefte, 1964, pp. 22-29; (1965) Am. Mineral., 50, pp. 2106-2107; Rankin, G.A., Wright, F.E., (1915) Amer. Journ. Sci., 39, p. 1. , 4th Ser; Bussem, W., Eitel, A., (1936) Z. Krist., 95, p. 175; Bartl, H., Scheller, T., (1970) Neues Jahrb. Mineral. Monatshefte, 35, p. 547; Christensen, A.N., (1987) Acta Chem. Scand. A, 41, p. 110; Lacerda, M., Irvine, J.T.S., Glasser, F.P., West, A.R., (1988) Nature, 332, pp. 525-526; Lacerda, M., West, A.R., Irvine, J.T.S., (1993) Solid State Ionics, 59, pp. 257-262; Imlach, J.A., Glasser, L.S.D., Glasser, F.P., (1971) Cem. Concr. Res., 1, p. 57; Singh, V.K., Glasser, F.P., (1988) Ceram. Int., 14, pp. 59-62; Irvine, J.T.S., West, A.R., (1989) J. Appl. Electrochem., 19, pp. 410-412; Strandbakke, R., Kongshaug, C., Haugsrud, R., Norby, T., (2009) J. Phys. Chem. C, 113, pp. 8938-8944; Lee, D.-K., Kogel, L., Ebbinghaus, S.G., Valov, I., Wiemhoefer, H.-D., Lerch, M., Janek, J., (2009) Phys. Chem. Chem. Phys., 11, pp. 3105-3114; Janek, J., Lee, D.-K., (2010) J. Korean Ceram. Soc., 47, pp. 99-105; Hayashi, K., Hirano, M., Hosono, H., (2005) J. Phys. Chem. B, 109, p. 11900; Sushko, P.V., Shluger, A.L., Hirano, M., Hosono, H., (2007) J. Am. Chem. Soc., 129, pp. 942-951; Palacios, L., Cabeza, A., Bruque, S., Garcia-Granda, S., Aranda, M.A.G., (2008) Inorg. Chem., 47, pp. 2661-2667; Kim, S.W., Matsuishi, S., Nomura, T., Kubota, Y., Tanaka, M., Hayashi, K., Kamiya, T., Hosono, H., (2007) Nano Lett., 7, pp. 1138-1143; Kim, S.-W., Hayashi, K., Hirano, M., Hosono, H., (2006) J. Am. Ceram. Soc., 89, pp. 3294-3298; Trofymluk, O., Toda, Y., Hosono, H., Navrotsky, A., (2005) Chem. Mater., 17, pp. 5574-5579; Tolkacheva, A.S., Shkerin, S.N., Korzun, I.V., Plaksin, S.V., Khrustov, V.R., Ordinartsev, D.P., (2012) Russ. J. Inorg. Chem., 57 (7), pp. 1014-1018
Correspondence Address Tsvetkov, D.S.; Department of Chemistry, Institute of Natural Sciences, Lenin Av. 51, Russian Federation
Publisher Elsevier
CODEN SSIOD
Language of Original Document English
Abbreviated Source Title Solid State Ionics
Source Scopus