Oxygen nonstoichiometry, defect structure and related properties of LaNi0.6Fe0.4O3-δ / Sereda V.V., Tsvetkov D.S., Ivanov I.L., Zuev A.Yu. // Journal of Materials Chemistry A. - 2015. - V. 3, l. 11. - P. 6028-6037.

ISSN:
20507488
Type:
Article
Abstract:
Experimental results on oxygen nonstoichiometry (δ), thermal and chemical expansion (ΔL/L0), total electrical conductivity (σ) and Seebeck coefficient (Q) as functions of the oxygen partial pressure (pO2) and temperature for LaNi0.6Fe0.4O3-δ are presented. The defect structure model of LaNi0.6Fe0.4O3-δ based on the localized nature of the electronic defects was proposed and successfully verified using the measured δ = f(pO2, T) dependences. On the basis of the model proposed the concentrations of the point defects were calculated as functions of the T and pO2. These concentrations were then employed in the model of chemical expansion and that of Seebeck coefficient. It was shown that both models coincide completely with the corresponding experimental data. The chemical expansion coefficients (βc) and mobilities of the charge carriers (electrons and holes) as functions of T and pO2 were calculated as a result. © The Royal Society of Chemistry 2015.
Author keywords:
Index keywords:
Expansion; Lanthanum alloys; Oxygen; Point defects; Seebeck coefficient; Chemical expansion; Electrical conductivity; Electronic defects; Electrons and holes; Oxygen non-stoichiometry; Oxygen partial
DOI:
10.1039/c4ta05882h
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924245682&doi=10.1039%2fc4ta05882h&partnerID=40&md5=2614010d3cdeb0177fb1eca0f3f03520
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924245682&doi=10.1039%2fc4ta05882h&partnerID=40&md5=2614010d3cdeb0177fb1eca0f3f03520
Affiliations Department of Chemistry, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
References Zinkevich, M., Aldinger, F., (2004) J. Alloys Compd., 375, pp. 147-161; Chiba, R., Yoshimura, F., Sakurai, Y., (1999) Solid State Ionics, 124, pp. 281-288; Kammer, K., Mikkelsen, L., Bilde-Srensen, J.B., (2006) J. Solid State Electrochem., 10, pp. 934-940; Sugita, S., Yoshida, Y., Orui, H., Nozawa, K., Arakawa, M., Arai, H., (2008) J. Power Sources, 185, pp. 932-936; Chen, J., Wang, S., Wen, T., Li, J., (2009) J. Alloys Compd., 487, pp. 377-381; Hou, J., Zhu, Z., Qian, J., Liu, W., (2014) J. Power Sources, 264, pp. 67-75; Zhu, Z., Qian, J., Wang, Z., Dang, J., Liu, W., (2013) J. Alloys Compd., 581, pp. 832-835; Millar, L., Taherparvar, H., Filkin, N., Slater, P., Yeomans, J., (2008) Solid State Ionics, 179, pp. 732-739; Morán-Ruiz, A., Vidal, K., Laguna-Bercero, M.Á., Larrañaga, A., Arriortua, M.I., (2014) J. Power Sources, 248, pp. 1067-1076; Arandiyan, H., Li, J., Ma, L., Hashemnejad, S.M., Mirzaei, M.Z., Chen, J., Chang, H., Chen, L., (2012) J. Ind. Eng. Chem., 18, pp. 2103-2114; Jahangiri, A., Aghabozorg, H., Pahlavanzadeh, H., (2013) Int. J. Hydrogen Energy, 38, pp. 10407-10416; Chen, J.Y., Rebello, J., Vashook, V., Trots, D.M., Wang, S.R., Wen, T.L., Zosel, J., Guth, U., (2011) Solid State Ionics, 192, pp. 424-430; Niwa, E., Uematsu, C., Mizusaki, J., Hashimoto, T., (2013) ECS Trans., 57, pp. 2133-2140; Basu, R.N., Tietz, F., Wessel, E., Buchkremer, H.P., Stver, D., (2004) Mater. Res. Bull., 39, pp. 1335-1345; Ohzeki, T., Hashimoto, T., Shozugawa, K., Matsuo, M., (2010) Solid State Ionics, 181, pp. 1771-1782; Zhou, X.-D., Yang, J.B., Thomsen, E.-C., Cai, Q., Scarfino, B.J., Nie, Z., Coffey, G.W., Pederson, L.R., (2006) J. Electrochem. Soc., 153, pp. J133-J138; Kiselev, E.A., Cherepanov, V.A., (2011) Solid State Ionics, 191, pp. 32-39; Kiselev, E.A., Cherepanov, V.A., (2010) J. Solid State Chem., 183, pp. 1992-1997; Iwasaki, K., Ito, T., Yoshino, M., Matsui, T., Nagasaki, T., Arita, Y., (2007) J. Alloys Compd., 430, pp. 297-301; Tsvetkov, D.S., Sereda, V.V., Zuev, A.Yu., (2010) Solid State Ionics, 180, pp. 1620-1625; Zuev, A.Yu., Vylkov, A.I., Petrov, A.N., Tsvetkov, D.S., (2008) Solid State Ionics, 179, pp. 1876-1879; Sehlin, S.R., Anderson, H.U., Sparlin, D.M., (1995) Phys. Rev. B: Condens. Matter Mater. Phys., 52, pp. 11681-11689; Aguadero, A., Fawcett, L., Taub, S., Woolley, R., Wu, K.-T., Xu, N., Kilner, J., Skinner, S., (2012) J. Mater. Sci., 47, pp. 3925-3948; Jones, A., Islam, M.S., (2008) J. Phys. Chem. C, 112, pp. 4455-4462; Takano, M., Nakanishi, N., Takeda, Y., Naka, S., Takada, T., (1977) Mater. Res. Bull., 12, pp. 923-928; Takeda, Y., Naka, S., Takano, M., Shinjo, T., Takada, T., Shimada, M., (1978) Mater. Res. Bull., 13, pp. 61-66; Battle, P., Gibb, T., Nixon, S., (1988) J. Solid State Chem., 77, pp. 124-131; Gateshki, M., Suescun, L., Kolesnik, S., Mais, J., ͆wierczek, K., Short, S., Dabrowski, B., (2008) J. Solid State Chem., 181, pp. 1833-1839; Idrees, M., Nadeem, M., Shah, M., Shin, T.J., (2011) J. Phys. D: Appl. Phys., 44, p. 455303; Hashimoto, T., Niwa, E., Uematsu, C., Miyashita, E., Ohzeki, T., Shozugawa, K., Matsuo, M., (2012) Hyperfine Interact., 206, pp. 47-50; Zuev, A.Yu., Tsvetkov, D.S., (2010) Solid State Ionics, 181, pp. 557-563; Zuev, A.Yu., Sereda, V.V., Tsvetkov, D.S., (2012) J. Electrochem. Soc., 159, pp. F594-F599; Zuev, A.Yu., Tsvetkov, D.S., (2013) Perovskite: Crystallography, Chemistry and Catalytic Performance, , ed. J. Zhang and H. Li, Nova Science Publishers, ch. Defect Structure and Defect-induced Expansion of Perovskite Oxides; Zuev, A.Yu., Sereda, V.V., Tsvetkov, D.S., (2014) J. Electrochem. Soc., 161, pp. F3032-F3038; Zuev, A., Sereda, V., Tsvetkov, D., (2014) Int. J. Hydrogen Energy, 39, pp. 21553-21560; Shannon, R.D., (1976) Acta Crystallogr., Sect. A: Found. Crystallogr., 32, pp. 751-767; Baskar, D., Adler, S.B., (2008) Chem. Mater., 20, pp. 2624-2628; Feldhoff, A., Martynczuk, J., Arnold, M., Myndyk, M., Bergmann, I., Šepelák, V., Gruner, W., Woltersdorf, J., (2009) J. Solid State Chem., 182, pp. 2961-2971; Makhdoomi, A.B., Ikram, M., Kumar, R., (2010) J. Magn. Magn. Mater., 322, pp. 2581-2584; Idrees, M., Nadeem, M., Siddique, M., (2013) Curr. Appl. Phys., 13, pp. 448-452; Bishop, S.R., Marrocchelli, D., Chatzichristodoulou, C., Perry, N.H., Mogensen, M.B., Tuller, H.L., Wachsman, E.D., (2014) Annu. Rev. Mater. Res., 44, pp. 205-239; Nishi, M., Horita, T., Yamaji, K., Yokokawa, H., Shimonosono, T., Kishimoto, H., Brito, M.E., Wang, F., (2012) ECS Trans., 45, pp. 171-180; Cherepanov, V.A., Petrov, A.N., Zuev, A.Yu., (2009) Solid State Electrochemistry I, , ed. V. Kharton, Wiley-VCH, Weinheim, ch. Defect Equilibria in Solids and Related Properties: An Introduction; Heikes, R.R., Ure, R.W., (1961) Thermoelectricity: Science and Engineering, , Interscience Pubs, N.Y
Correspondence Address Sereda, V.V.; Department of Chemistry, Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Royal Society of Chemistry
CODEN JMCAE
Language of Original Document English
Abbreviated Source Title J. Mater. Chem. A
Source Scopus