Oxygen nonstoichiometry, defect structure and oxygen diffusion in the double perovskite GdBaCo2O6-δ / Tsvetkov D.S., Ananjev M.V., Eremin V.A., Zuev A., Kurumchin E. // Dalton Transactions. - 2014. - V. 43, l. 42. - P. 15937-15943.

ISSN:
14779226
Type:
Article
Abstract:
Oxygen nonstoichiometry of GdBaCo2O6-δ was studied by means of the thermogravimetric technique in the temperature range 600-1000 °C. The defect structure model based on the simple cubic perovskite GdCoO3-δ was shown to be valid for GdBaCo2O6-δ up to temperatures as low as 600 °C. Two independent methods, namely dc-polarization with the YSZ microelectrode and 18O-isotope exchange with gas phase analysis, were used to determine the oxygen self-diffusion coefficient in the double perovskite GdBaCo2O6-δ. All measurements were carried out using ceramic samples identically prepared from the same single phase powder of GdBaCo2O6-δ. The experimental data on oxygen nonstoichiometry of GdBaCo2O6-δ allowed a precise calculation of the oxygen interphase exchange rate and the oxygen tracer diffusion coefficient on the basis of the isotope exchange measurements. The values of the oxygen self-diffusion coefficient measured by the dc-polarization technique were found to be in very good agreement with the ones of the oxygen tracer diffusion coefficient. This journal is © the Partner Organisations 2014.
Author keywords:
Index keywords:
Double perovskites; Oxygen diffusion; Oxygen non-stoichiometry
DOI:
10.1039/c4dt01486c
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908032140&doi=10.1039%2fc4dt01486c&partnerID=40&md5=a4e201f5888eb0cbde1b6267538634eb
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908032140&doi=10.1039%2fc4dt01486c&partnerID=40&md5=a4e201f5888eb0cbde1b6267538634eb
Affiliations Department of Chemistry, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Institute of High Temperature Electrochemistry, Ural Division, Russian Academy of Sciences, Ekaterinburg, Russian Federation
Funding Details 13-03-00519, RFBR, Russian Foundation for Basic Research
References Chang, A., Skinner, S.J., Kilner, J.A., (2006) Solid State Ionics, 177, p. 2009; Li, N., Lu, Z., Wei, B., Huang, X., Chen, K., Zhang, Y., Su, W., (2008) J. Alloys Compd., 454, p. 274; Taskin, A.A., Lavrov, A.N., Ando, Y., (2005) Appl. Phys. Lett., 86, p. 091910; Tarancon, A., Skinner, S.J., Chater, R.J., Hernandez-Ramirez, F., Kilner, J.A., (2007) J. Mater. Chem., 17, p. 3175; Choi, M.-B., Jeon, S.-Y., Lee, J.-S., Hwang, H.-J., Song, S.-J., (2010) J. Power Sources, 195, p. 1059; Zhang, K., Ge, L., Ran, R., Shao, Z., Liu, S., (2008) Acta Mater., 56, p. 4876; Tsvetkov, D.S., Sereda, V.V., Zuev A.Yu., (2010) Solid State Ionics, 180, p. 1620; Parfitt, D., Chroneos, A., Tarancon, A., Kilner, J.A., (2011) J. Mater. Chem., 21, p. 2183; Hermet, J., Geneste, G., Dezanneau, G., (2010) Appl. Phys. Lett., 97, p. 174102; Hermet, J., Dupé, B., Dezanneau, G., (2012) Solid State Ionics, 216, p. 50; Routbort, J.L., Doshi, R., Krumpelt, M., (1996) Solid State Ionics, 90, p. 21; Tsvetkov, D.S., Ivanov, I.L., Zuev A.Yu., (2012) Solid State Ionics, 218, p. 13; Wiemhoefer, H.-D., Bremes, H.-G., Nigge, U., Zipprich, W., (2002) Solid State Ionics, 150, p. 63; Ananyev, M.V., Kurumchin E.Kh., (2010) Russ. J. Phys. Chem. A, 84, p. 1039; Klier, K., Kucera, E., (1966) J. Phys. Chem. Solids, 27, p. 1087; Tsvetkov, D.S., Sereda, V.V., Zuev A.Yu., (2011) Solid State Ionics, 192, p. 215
Correspondence Address Tsvetkov, D.S.; Department of Chemistry, Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Royal Society of Chemistry
CODEN DTARA
Language of Original Document English
Abbreviated Source Title Dalton Trans.
Source Scopus