Oxygen nonstoichiometry, defect structure, thermal and chemical expansion of pseudo-cubic La0.8Sr0.2Co0.9Ni0.1O3-δ and double perovskite GdBaCo2O6-δ / Zuev A.Yu., Sereda V.V., Tsvetkov D.S. // Journal of the Electrochemical Society. - 2014. - V. 161, l. 11. - P. F3032-F3038.

ISSN:
00134651
Type:
Article
Abstract:
The results of thermal and chemical expansion measured as a function of oxygen partial pressure, pO2, and temperature by meansof in situ XRD and dilatometric techniques are presented for the pseudo-cubic cobaltite La0.8Sr0.2Co0.9Ni0.1O3-δ and the double perovskite GdBaCo2O6-δ. The modeling of the defect structure of La0.8Sr0.2Co0.9Ni0.1O3-δ was carried out. Within the framework of the model all nickel sites are assumed to be occupied by localized electrons whereas both electrons and holes can be localized on cobalt sites. The defect structure model proposedwas shown to fit pretty well available experimental data on oxygen nonstoichiometry of the perovskite studied. Concentrations of all defect species were calculated and then employed to compute the chemical expansion of the La0.8Sr0.2Co0.9Ni0.1O3-δ lattice as a function of its oxygen nonstoichiometry. Cobalt ions transition from low spin (LS) state to high spin (HS) one induced by temperature increase was taken into account as well. The model proposed was shown to coincide completely with experimental data on chemical expansion for the La0.8Sr0.2Co0.9Ni0.1O3-δ at all temperatures investigated. As a result, the spin state distribution of cobalt was calculated depending on temperature for the oxide studied. Double perovskite latticechemical expansion along a axis and contraction along c axis with decreasing oxygen content, 6-δ, were found to compensate each other completely and, therefore, volume chemical expansion becomes negligible. As a result the cell volume linearly increases with temperature contrary to the simple pseudo-cubic perovskite. © 2014 The Electrochemical Society.
Author keywords:
Index keywords:
Cobalt; Defect structures; Defects; Expansion; Hydraulic structures; Lanthanum; Lanthanum compounds; Nickel; Oxygen; Perovskite; Chemical expansion; Dilatometric techniques; Double perovskites; Electr
DOI:
10.1149/2.0061411jes
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923545050&doi=10.1149%2f2.0061411jes&partnerID=40&md5=5375f9dd1411b6fdd1ec8117d619e440
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923545050&doi=10.1149%2f2.0061411jes&partnerID=40&md5=5375f9dd1411b6fdd1ec8117d619e440
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
References Tai, L.-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., Sehlin, S.R., (1995) Solid State Ionics, 76, p. 259; Bishop, S.R., Duncan, K.L., Wachsman, E.D., (2010) J. Am. Ceram. Soc., 93, p. 4115; Maignan, A., Martin, C., Pelloquin, D., Nguyen, N., Raveau, B., (1999) J. Solid State Chem., 142, p. 247; Taskin, A.A., Lavrov, A.N., Ando, Y., (2005) Appl. Phys. Lett., 86, p. 091910; Tsvetkova, N.S., Yu. Zuev, A., Tsvetkov, D.S., (2013) Journal of Power Sources, 243, p. 403; Cherepanov, V.A., Petrov, A.N., Zuev, A.Y., (2009) Solid State Electrochemistry I: Fundamentals and Their Applications, p. 43. , V. Kharton, Editor, Wiley-VCH, Weinheim; Hjalmarsson, P., Søgaard, M., Mogensen J, M., (2010) Solid State Chem., 183, p. 1853; Yu. Zuev, A., Sereda, V.V., Tsvetkov, D.S., (2012) J. Electrochem. Soc., 159, p. F594; Tsvetkov, D.S., Ivanov, I.L., Malyshkin, D.A., Zuev, A.Y., (2014) Dalton Trans., 43, p. 11862; Cox-Galhotra, R.A., Huq, A., Hodges, J.P., Kim, J.-H., Yu, C., Wang, X., Jacobson, A.J., McIntosh, S., (2013) J. Mater. Chem. A., 1, p. 3091; Cox-Galhotra, R.A., Huq, A., Hodges, J.P., Yu, C., Wang, X., Gong, W., Jacobson, A.J., McIntosh, S., (2013) Solid State Ionics, 34, pp. 249-250; Tsvetkov, D.S., Sereda, V.V., Zuev, A.Y., (2010) Solid State Ionics, 180, p. 1620; Yu. Zuev, A., Vylkov, A.I., Petrov, A.N., Tsvetkov, D.S., (2008) Solid State Ionics, 179, p. 1876; Strelkow, P.G., (1937) Physik. Zeita. Sowjetunion, 12, p. 73; Mott, P.G., Gurney, P.G., (1948) Electronic Processes in Ionic Crystals, , Clarendon Press, Oxford; Seitz, F., (1939) Phys. Rev., 56, p. 1063; Lawson, A.W., (1950) Phys. Rev., 78, p. 185; Adler, S.B., (2001) J. Am. Ceram. Soc., 84, p. 2117; Yu. Zuev, A., Sereda, V.V., Tsvetkov, D.S., Int. J. Hydrogen Energy, , in press; Yu. Zuev, A., Tsvetkov, D.S., (2013) Perovskite: Crystallography, Chemistry and Catalytic Performance, p. 141. , Eds. Jinghua Zhang and Huan Li, Nova Science Publisher, New York; Bishop, S.R., Marrocchelli, D., Chatzichristodoulou, C., (2014) Annu. Rev. Mater. Res., 44, p. 61; Shannon, R.D., (1976) Acta Crystallogr., A32, p. 751; Baskar, D., Adler, S.B., (2008) Chem. Mater., 20, p. 2624; Tsvetkov, D.S., Ivanov, I.L., Zuev, A.Y., (2013) J. Solid State Chem., 199, p. 154; Kharton, V.V., Kovalevsky, A.V., Avdeev, M., Tsipis, E.V., Patrakeev, M.V., Yaremchenko, A.A., Naumovich, E.N., Frade, J.R., (2007) Chem. Mater., 19, p. 2027
Correspondence Address Zuev, A.Yu.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Electrochemical Society Inc.
CODEN JESOA
Language of Original Document English
Abbreviated Source Title J Electrochem Soc
Source Scopus