Some inferences from in vivo experiments with metal and metal oxide nanoparticles: The pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview) / Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Loginova N.V., Minigalieva I.A., Kireyeva E.P., Shur V.Y., Shishkina E.V., Beikin Y.B., Makeyev O.H., Valamina I.E. // International Journal of Nanomedicine. - 2015. - V. 10, l. . - P. 3013-3029.

ISSN:
11769114
Type:
Review
Abstract:
The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs) in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 μm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other. Our data testify to the high activity of the pulmonary phagocytosis of NPs deposited in airways. This fact suggests that safe levels of exposure to airborne NPs are possible in principle. However, there are no reliable foundations for establishing different permissible exposure levels for particles of different size within the nanometric range. For workroom air, such permissible exposure levels of metallic NP can be proposed at this stage, even if tentatively, based on a sufficiently conservative approach of decreasing approximately tenfold the exposure limits officially established for respective micro-scale industrial aerosols. It was shown that against the background of adequately composed combinations of some bioactive agents (comprising pectin, multivitamin-multimineral preparations, some amino acids, and omega-3 polyunsaturated fatty acid) the systemic toxicity and even genotoxicity of metallic NPs could be markedly attenuated. Therefore we believe that, along with decreasing NP-exposures, enhancing organisms' resistance to their adverse action with the help of such bioprotectors can prove an efficient auxiliary tool of health risk management in occupations connected with them. © 2015 Katsnelson et al.
Author keywords:
Metal oxides; Metals; Nanoparticles; Toxicity
Index keywords:
amino acid; copper oxide nanoparticle; gold nanoparticle; manganese oxide nanoparticle; metal nanoparticle; metal oxide nanoparticle; multivitamin; nanoparticle; nickel oxide nanoparticle; omega 3 fat
DOI:
10.2147/IJN.S80843
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928152587&doi=10.2147%2fIJN.S80843&partnerID=40&md5=57190e2fa65b309308b03ad4b148eaf2
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928152587&doi=10.2147%2fIJN.S80843&partnerID=40&md5=57190e2fa65b309308b03ad4b148eaf2
Affiliations The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russian Federation; The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russian Federation; The City Clinical Diagnostics Centre, Ekaterinburg, Russian Federation; The Ural State Medical University, Ekaterinburg, Russian Federation
Author Keywords Metal oxides; Metals; Nanoparticles; Toxicity
Chemicals/CAS amino acid, 65072-01-7; pectin, 9000-69-5; oxide, 16833-27-5; Metals, Heavy; Oxides
References Katsnelson, B.A., Privalova, L.I., Degtyareva, T.D., Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles (2010) Central European Journal of Occupational and Environmental Medicine., 16, pp. 47-63; Katsnelson, B.A., Privalova, L.I., Kuzmin, S.V., Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? (2010) Int J Occup Environ Health., 16 (4), pp. 508-524; Katsnelson, B.A., Degtyareva, T.D., Minigalieva, I.I., Sub-chronic systemic toxicity and bio-accumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats (2011) Int J Toxicol., 30 (1), pp. 60-67; Katsnelson, B.A., Privalova, L.I., Kuzmin, S.V., An approach to tentative reference levels setting for nanoparticles in the workroom air based on comparing their toxicity with that of their micrometric counterparts: A case study of iron oxide Fe3O4 (2012) ISRN Nanotechnol., 2012, p. 12; Katsnelson, B.A., Privalova, L.I., Sutunkova, M.P., Uptake of some metallic nanoparticles by, and their impact on pulmonary macrophages in vivo as viewed by optical, atomic force, and transmission electron microscopy (2012) J Nanomed Nanotechnol., 3, pp. 1-8; Katsnelson, B.A., Privalova, L.I., Sutunkova, M.P., Interaction of iron oxide Fe3O4 nanoparticles and alveolar macrophages in vivo (2012) Bull Exp Biol Med., 152, pp. 627-629; Katsnelson, B.A., Privalova, L.I., Gurvich, V.B., Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors (2013) Int J Mol Sci., 14 (2), pp. 2449-2483; Privalova, L.I., Katsnelson, B.A., Loginova, N.V., Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors (2014) Int J Mol Sci., 15 (7), pp. 12379-12406; Privalova, L.I., Katsnelson, B.A., Loginova, N.V., Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles (2014) Int J Mol Sci., 15 (11), pp. 21538-21553; Katsnelson, B.A., Minigalieva, I.A., Privalova, L.I., Lower airways response in rats to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pre-treatment (2014) Toksicol Vestnik., 6, pp. 8-14; Zhu, M.T., Feng, W.Y., Wang, B., Comparative study of pulmonary responses to nano- and submicron ferric oxide in rats (2008) Toxicology., 247 (2-3), pp. 102-111; Mahmoudi, M., Simchi, A., Milani, A.S., Stroeve, P., Cell toxicity of superparamagnetic iron oxide nanoparticles (2009) J Colloid Interface Sci., 336 (2), pp. 510-518; Mahmoudi, M., Laurent, S., Shokrgozar, M.A., Hosseinkhani, M., Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell "Vision" versus Physicochemical Properties of Nanoparticles (2011) ACS Nano., 5 (9), pp. 7263-7276; Naqvi, S., Samim, M., Abdin, M.Z., Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress (2010) Int J Nanomedicine., 5, pp. 983-989; Wu, X., Tan, Y., Mao, H., Zhang, M., Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells (2010) Int J Nanomedicine., 5, pp. 385-399; Singh, N., Jenkins, G.J., Asadi, R., Doak, S.H., Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) (2010) Nano Rev., 1, p. 5358; Soenen, S.J., De Cuyper, M., De Smedt, S.C., Braeckmans, K., Investigating the toxic effects of iron oxide nanoparticles (2012) Methods Enzymol., 509, pp. 195-224; Liu, G., Gao, J., Ai, H., Chen, X., Applications and potential toxicity of magnetic iron oxide nanoparticles (2013) Small., 9 (9-10), pp. 1533-1545; Markides, H., Rotherham, M., El Haj, A.J., Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine (2012) J Nanomater., 2012; Barhoumi, L., Dewez, D., Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris (2013) Bio Med Research International., 2013; Ahamed, M., Karns, M., Goodson, M., DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells (2008) Toxicol Appl Pharmacol., 233 (3), pp. 404-410; Arora, S., Jain, J., Rajwade, J.M., Paknikar, K.M., Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells (2009) Toxicol Appl Pharmacol., 236 (3), pp. 310-318; Trickler, W.J., Lantz, S.M., Murdock, R.C., Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain micro vessel endothelial cells (2010) Toxicol Sci., 118 (1), pp. 160-170; Li, T., Albee, B., Alemayehu, M., Comparative toxicity study of Ag, Au, Ag-Au bimetallic nanoparticles on Daphnia magna (2010) Anal Bioanal Chem., 398 (2), pp. 689-700; Park, E.J., Bae, E., Yi, Y., Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nano-particles (2010) Environ Toxicol Pharmacol., 30 (2), pp. 162-168; Park, M.V., Neigh, A.M., Vermeulen, J.P., The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles (2011) Biomaterials., 32 (36), pp. 9810-9817; Choi, J.E., Kim, S., Ahn, J.H., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish (2010) Aquat Toxicol., 100 (2), pp. 151-159; Kim, Y.S., Song, M.Y., Park, J.D., Subchronic oral toxicity of silver nanoparticles (2010) Particle and Fibre Toxicology., 7, p. 20; Ahmadi, F., Kordestany, A.H., Investigation on silver retention in different organs and oxidative stress enzymes in male broiler fed diet supplemented with powder of nano silver (2011) Am-Euras J Toxicol Sci., 3 (1), pp. 28-35; Stebounova, L.V., Adamcakova-Dodd, A., Kim, J.S., Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model (2011) Particle and Fibre Toxicology., 8 (1), p. 5; Srivastava, M., Singh, S., Self, W.T., Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase (2011) Environ Health Perspect., 120, pp. 56-61; Hackenberg, S., Scherzed, A., Kessler, M., Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cell (2011) Toxicol Lett., 201 (1), pp. 27-33; Foldbjerg, R., Dang, D.A., Autrup, H., Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549 (2011) Arch Toxicol., 85 (7), pp. 743-750; Kim, H.R., Kim, M.J., Lee, S.Y., Oh, S.M., Chung, K.H., Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells (2011) Mutat Res., 726 (2), pp. 129-135; Li, Y., Chen, D.H., Yan, J., Chen, Y., Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay (2012) Mutat Res., 745 (1-2), pp. 4-10; Tavares, P., Balbino, F., de Martins Oliveira, H., Evaluation of genotoxic effect of silver nanoparticles (Ag-NPs) in vitro and in vivo (2012) J Nanopart Res., 14, p. 791; Asare, N., Instanes, C., Sandberg, W.J., Cytotoxic and genotoxic effects of silver nanoparticles in testicular cell (2012) Toxicology., 291 (1-3), pp. 65-72; Flower, N.A., Brabu, B., Revathy, M., Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay (2012) Mutat Res., 742 (1-2), pp. 61-65; Karlsson, H., Gliga, A.R., Kohonen, P., Wallbergb, P., Fadeel, B., Genotoxicity and epigenetic effects of silver nanoparticles (2012) Toxicol Lett., 211; Lim, D.H., Jang, J., Kim, S., Kang, T., Lee, K., Choi, I.H., The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress in human macrophages using cDNA microarray analysis (2012) Biomaterials., 33 (18), pp. 4690-4699; Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D.S., Autrup, H., Toxicity of silver nanoparticles - Nanoparticle or silver ion? (2012) Toxicol Lett., 208 (3), pp. 286-292; Cronholm, P., Karlsson, H.L., Hedberg, J., Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions (2013) Small., 8 (7), pp. 970-982; Gomes, T., Araújo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis (2013) Mar Environ Res., 84, pp. 51-59; Ahamed, M., AlSalhi, M.S., Siddiqui, M.K., Silver nanoparticles applications and human health (2010) Clin Chim Acta., 411 (23-24); Singh, S., D'Britto, V., Prabhune, A.A., Ramana, C.V., Dhawan, A., Prasad, B.L., Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles (2010) New J Chem., 34, pp. 294-301; Bakri, S.J., Pulido, J.S., Mukerjee, P., Marler, R.J., Mukhopadhyay, D., Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model (2008) Retina., 28 (1), pp. 147-149; Pan, Y., Leifert, A., Ruau, D., Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage (2009) Small., 5 (18), pp. 2067-2076; Chen, Y.S., Hung, Y.C., Huang, G.S., Assessment of the in vivo toxicity of gold nanoparticles (2009) Nanoscale Res Lett., 4 (8), pp. 858-864; Balasurbamanian, S.K., Jittiwat, J., Manikandan, J., Ong, C.N., Yu, L.E., Ong, W.Y., Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats (2010) Biomaterials., 31 (8), pp. 2034-2042; Zhang, Q., Hitchins, V.M., Schrand, A.M., Hussain, S.M., Goering, P.L., Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators (2010) Nanotoxicology., 5 (3), pp. 284-295; Li, J.J., Lo, S.L., Ng, C.T., Genomic instability of gold nanoparticle treated human lung fibroblast cells (2011) Biomaterials., 32 (23), pp. 5515-5523; Trickler, W.J., Lantz, S.M., Murdock, R.C., Brain microvessel endothelial cells responses to gold microparticles: In vitro pro-inflammatory mediators and permeability (2011) Nanotoxicology., 5 (4), pp. 479-492; Glazer, E.S., Zhu, C., Hamir, A.N., Borne, A., Thompson, C.S., Curley, S.A., Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model (2011) Nanotoxicology., 5 (4), pp. 459-468; Mustafa, T., Watanabe, F., Monroe, W., Impact of gold nanoparticle concentration on their cellular uptake by MC3T3-E1 mouse osteoblastic cells as analyzed by transmission electron microscopy (2011) J Nanomed Nanotechnol., 2, pp. 1-8; Rudolf, R., Friedrich, B., Stopic, S., Anzel, I., Tomic, S., Colic, M., Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis (2012) J Biomater Appl., 26 (5), pp. 595-612; Dykman, L., Khlebtsov, N., Gold nanoparticles in biomedical applications: Recent advances and perspectives (2012) Chem Soc Rev., 41 (6), pp. 2256-2282; Choi, S.Y., Jeong, S., Jang, S.H., In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells (2012) Toxicology in Vitro., 26 (2), pp. 229-237; Shulz, M., Ma-Hock, L., Brill, S., Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats (2012) Mutat Res., 745 (1-2), pp. 51-57; Akhtar, M.J., Kumar, S., Alhadlaq, H.A., Alrokayan, S.A., Abu-Salah, K.M., Ahamed, M., Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells (2013) Toxicol Ind Health., , Epub Dec 5; Chen, Z., Meng, H., Xing, G., Acute toxicological effects of copper nanoparticles in vivo (2006) Toxicol Lett., 163 (2), pp. 109-120; Karlsson, H.L., Cronholm, P., Gustafsson, J., Möller, L., Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes (2008) Chem Res Toxicol., 21 (9), pp. 1726-1732; Studer, A.M., Limbach, L.K., van Duc, L., Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles (2010) Toxicol Lett., 197 (3), pp. 169-174; Bondarenko, O., Ivask, A., Käkinen, A., Kahru, A., Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action (2012) Environ Pollut., 169, pp. 81-89; Pang, C., Selck, H., Misra, S.K., Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: A comparison of Cu added in aqueous form or as nano- and micro-CuO particles (2012) Aquat Toxicol., 106-107, pp. 114-122; Magaye, R., Zhao, J., Bowman, L., Ding, M., Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (2012) Exp Ther Med., 4 (4), pp. 551-561; Alarifi, S., Ali, D., Verma, A., Alakhtani, S., Ali, B.A., Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells (2013) Int J Toxicol., 32 (4), pp. 296-307; Xu, J., Li, Z., Xu, P., Xiao, L., Yang, Z., Nanosized copper oxide induces apoptosis through oxidative stress in podocytes (2013) Arch Toxicol., 87 (6), pp. 1067-1073; Cuillel, M., Chevallet, M., Charbonnier, P., Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions (2014) Nanoscale., 6 (3), pp. 1707-1715; Zhang, Q., Yukinori, K., Sato, K., Nakakuki, K., Koyahama, N., Donaldson, K., Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: Role of free radicals (1998) J Toxicol Environ Health A., 53 (6), pp. 423-438; Zhang, Q., Yukinori, K., Zhu, X., Comparative toxicity of standard nickel and ultrafine nickel after intratracheal instillation (2003) J Occup Health., 45 (1), pp. 23-30; Magaye, R., Zhao, J., Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity (2012) Environmental Toxicology and Pharmacology., 34 (3), pp. 644-650; Morimoto, Y., Hirohashi, M., Ogami, A., Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates (2011) Journal of Occupational Health., 53 (4), pp. 293-295; Capasso, L., Camatini, M., Gualtieri, M., Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells (2014) Toxicol Lett., 226 (1), pp. 28-34; Hussain, S.M., Javorina, A.K., Schrand, A.M., Duhart, H.M., Ali, S.F., Schlager, J.J., The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion (2006) Toxicol Sci., 92 (2), pp. 456-463; Singh, S.P., Kumari, M., Kumari, S.I., Rahman, M.F., Mahboob, M., Grover, P., Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure (2013) J Appl Toxicol., 33 (10), pp. 1165-1179; Bellusci, M., La Barbera, A., Padella, F., Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process (2014) Int J of Nanomedicine., 9, pp. 1919-1929; Katsnelson, B.A., Konysheva, L.K., Privalova, L.Y., Morosova, K.I., Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats (1992) Br J Ind Med., 49 (3), pp. 172-181; Geiser, M., Kreyling, W.G., Deposition and biokinetics of inhaled nanoparticles (2010) Particle and Fibre Toxicology., 7, p. 2; (1994) ICRP Publication 66: Human respiratory tract model for radiological protection., , http://www.icrp.org/publication.asp?id=ICRP, [homepage on the Internet]. A report of a Task Group of the International Commission on Radiological Protection; Publication 66. Accessed February 27, 2015; Kreyling, W.G., Geiser, M., Dosimetry of inhaled nanoparticles (2009) Nanoparticles in Medicine and Environment, Inhalation and Health Effects., pp. 145-173. , Marijnissen JC, Gradon L. Springer Science and Business Media; Fröhlich, E., Salar-Behzadi, S., Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies (2014) Int J Mol Sci., 15 (3), pp. 4795-4822; Sadauskas, E., Wallin, H., Stolenberg, M., Kupffer cells are central in the removal of nanoparticles from the organism (2007) Part Fibre Toxicol., 4, pp. 10-16; Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M.A., Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice (2010) Biochem Biophys Res Commun., 393 (4), pp. 649-655; Rylova, M.L., (1964) Methods of Investigating Long-Term Effects of Noxious Environmental Agents in Animal Experiments, , Leningrad: Meditsina; Adeyemi, O.O., Yemitan, O.K., Taiwo, A.E., Neurosedative and muscle-relaxant activities of ethyl acetate extract of Baphianitida nitida AFZEL (2006) J Ethnopharmacol., 106 (3), pp. 312-316; Fernandez, S.P., Wasowski, C., Loscalzo, L.M., Central nervous system depressant action of flavonoid glycoside (2006) Eur J Pharmacol., 539 (3), pp. 168-176; Donaldson, K., Stone, V., Tran, C.K., Kreyling, W., Borm, P.J., Nanotoxicology (editorial) (2004) Occup Environ Med., 61, pp. 727-728; Oberdörster, G., Oberdörster, E., Oberdörster, J., Nanotoxicology: An emerging discipline evolving from studied of ultrafine particles (2005) Environ Health Perspect., 113 (7), pp. 823-839; Fadeel, B., Clear and present danger? Engineered nanoparticles and the immune system (2012) Swiss Med Wkly., 142; Kilburn, K.H., Alveolar clearance of particles. A bullfrog lung model (1969) Arch Environ Health., 18 (4), pp. 556-563; Renwick, L.C., Brown, D., Clouter, K., Donaldson, K., Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types (2004) Occup Environ Med., 61 (5), pp. 442-447; Stoeger, T., Reinhard, C., Takenaka, S., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice (2006) Environ Health Perspect., 114 (3), pp. 328-333; Grassian, V.H., O'Shaughnessy, P.T., Adamcakova-Dodd, A., Pettibone, J.M., Thorne, P.S., Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm (2007) Environ Health Perspect., 115 (3), pp. 397-402; Sager, T.M., Porter, D.W., Robinson, V.A., Lindsley, W.G., Schwegler-Berry, V.A., Castranova, V., Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity (2007) Nanotoxicology., 1 (2), pp. 118-129; Warheit, D.B., Reed, K.L., Sayes, C.M., A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity (2009) Nanotoxicology., 3 (3), pp. 181-187; Privalova, L.I., Katsnelson, B.A., Osipenko, A.B., Yushkov, B.H., Babushkina, L.G., Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity (1980) Environ Health Perspect., 35, pp. 205-218; Privalova, L.I., Katsnelson, B.A., Yelnichnykh, L.N., Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels (1987) Br J Ind Med., 44 (4), pp. 228-235; Katsnelson, B.A., Privalova, L.I., Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles (1984) Environ Health Perspect., 55, pp. 313-325; Katsnelson, B.A., Konyscheva, L.K., Nye, S., Privalova, L.I., Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model (1994) Occup Environ Med., 51 (3), pp. 173-180; Katsnelson, B.A., Konysheva, L.K., Privalova, L.Y., Sharapova, N.Y., Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles (1997) Inhalation Toxicology., 9 (8), pp. 703-715; Bastus, N.G., Casals, E., Socorro, V.C., Puntes, V., Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media (2008) Nanotoxicology., 2 (3), pp. 99-112; Fröhlich, E., Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles (2013) Curr Drug Metab., 14 (9), pp. 976-988; Privalova, L.I., Katsnelson, B.A., Sharapova, N.Y., Kislitsina, N.S., On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis (1995) Med Lav., 86 (6), pp. 511-521; Yokel, R.A., McPhail, R.C., Engineered nanomaterials: Exposures, hazards, and risk prevention (2011) J Occup Med Toxicol., 6, p. 7; Murashov, V., Shulte, P., Geraci, C., Howard, J., Regulatory approaches to worker protection in nanotechnology industry in the USA and European Union (2011) Ind Health., 49 (3), pp. 280-296; Grosco, A., Petri-Fink, A., Magrez, A., Rediker, M., Meyer, T., Management of nanomaterials safety in research environment (2010) Part Fibre Toxicol., 7, p. 40; van Broekhuizen, P., Dealing with uncertainties in the nanotech workplace practice: Making the precautionary approach operational (2011) J Biomed Nanotechnol., 7 (1), pp. 15-17; (2011) Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide., , http://www.cdc.gov/niosh/docs/2011-160/, [homepage on the Internet]. CDC and NIOSH. US Department of Health and Human Services; Accessed February 27, 2015; Katsnelson, B.A., Kuzmin, S.V., Degtyareva, T.D., Privalova, L.I., Soloboyeva, J.I., "Biological prophylaxis" - One of the ways to proceed from the analytical environmental epidemiology to the population health protection (2008) Cent Eur J Occup Environ Med., 14, pp. 41-42; Katsnelson, B.A., Privalova, L.I., Gurvich, V.B., Enhancing Population's Resistance to Toxic Exposures as an Auxilliary Tool of Decreasing Environmental and Occupational Health Risks (a Self-Overview) (2014) Journal of Environmental Protection., 5, pp. 1435-1449
Correspondence Address Katsnelson, B.A.; The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Russian Federation; email: bkaznelson@etel.ru
Publisher Dove Medical Press Ltd.
PubMed ID 25945048
Language of Original Document English
Abbreviated Source Title Int. J. Nanomed.
Source Scopus