Analysis of the switching current data in uniaxial ferroelectrics / Shur V.Ya., Rumyantsev E.L., Shishkina E.V. // Ferroelectrics. - 2013. - V. 443, l. 1. - P. 105-115.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The Kolmogorov-Avrami approach modified for polarization reversal in finite media has been proposed for analysis of the switching current data in real systems. It has been verified by computer simulation that for adequate fitting of the experimental data the switching process must be separated into several stages distinguished by nucleation type and growth dimensionality. The abrupt transition between stages ("geometrical catastrophe") corresponds to distinct change in domain structure geometry. The examples of the stage sequences for switching in elongated sample, for formation of maze structure, and for spatially inhomogeneous nucleation have been considered both experimentally and by computer simulation. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Domain kinetics; Ferroelectrics; Geometrical catastrophe; Kolmogorov-avrami theory; Switching current
Index keywords:
Abrupt transition; Domain kinetics; Geometrical catastrophe; Growth dimensionality; Kolmogorov-avrami theory; Polarization reversals; Spatially inhomogeneous; Switching currents; Computer simulation;
DOI:
10.1080/00150193.2013.785731
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883254216&doi=10.1080%2f00150193.2013.785731&partnerID=40&md5=606890fbc0c03fdbad17bfc3227080ce
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883254216&doi=10.1080%2f00150193.2013.785731&partnerID=40&md5=606890fbc0c03fdbad17bfc3227080ce
Affiliations Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000, Ekaterinburg, Russian Federation
Author Keywords Domain kinetics; Ferroelectrics; Geometrical catastrophe; Kolmogorov-avrami theory; Switching current
References Kalinin, S., Gruverman, A., (2007) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, 2. , ed. by, (New York, NY: Springer Science + Business Media, LLC); Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys.B, 81, pp. 729-751; Merz, W.J., Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness (1956) J. Appl. Phys, 27, pp. 938-942; Shur, V.Y., Rumyantsev, E.L., Makarov, S.D., Geometrical transformations of the ferroelectric domain structure in electric field (1995) Ferroelectrics, 172, pp. 361-372; Shur, V.Y., Rumyantsev, E.L., Makarov, S.D., Kinetics of polarization switching in finite-size ferroelectric samples (1995) Phys. Solid State, 37, pp. 917-919; Shur, V.Y., Rumyantsev, E.L., Makarov, S.D., The geometrical phase transformations during evolution in finite media (1996) Mathematics of Microstructure Evolution, pp. 187-194. , EMPMD Monograph Series, Ed. by L.-Q. Chen, B. Fultz, J.W. Cahn, J. R. Manning, J. E. Morral, and J. A. Simmons; Shur, V.Y., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys, 84, pp. 445-451; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, p. 822. , Springer New York; Ishibashi, Y., Takagi, Y., Note on ferroelectric domain switching (1971) J. Phys. Soc. Jpn, 31, pp. 506-510; User, T.D., Poole, C.P., Farach, H.A., Ferroelectric polarization reversal in potassium dideuterium phosphate as monitored by switching current (1991) Ferroelectrics, 120, pp. 201-209; Dimmler, K., Parris, M., Butler, D., Eaton, S., Pouligny, B., Scott, J.F., Ishibashi, Y., Switching kinetics in KNO3 ferroelectric thin-film memories (1987) J. Appl. Phys., 61, pp. 5467-5470; Scott, J.F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shawabkeh, A., Oliver, W.F., Switching kinetics of lead zirconate titanate submicron thin-film memories (1988) J. Appl. Phys, 64, pp. 787-792; Duiker, H.M., Beale, P.D., Grain-size effects in ferroelectric switching (1990) Phys. Rev. B, 41, pp. 490-495; Orihara, H., Hashimoto, S., Ishibashi, Y., A theory of D-E hysteresis loop based on the Avrami model (1994) J. Phys. Soc. Jpn, 63, pp. 1031-1035; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, p. 201. , North-Holland, Amsterdam; Fatuzzo, E., Theoretical considerations on the switching transient in ferroelectrics (1962) Phys. Rev, 127, pp. 1999-2005; Ishibashi, Y., Iwata, M., The grain-restricted switching model (2012) Ferroelectrics, 433, pp. 41-44; Shur, V.Y., Fast polarization reversal process: Evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, Ferroelectricity and Related Phenomena Series, 10, p. 153. , edited by C. A. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach Science, New York), Chap. 6; Shur, V.Y., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , Ed. by J. W. P. Schmelzer, WILEY-VCH (Weinheim, ), Ch.6; Shur, V.Y., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. Mat. Sci, 41, pp. 199-210; Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, pp. 622-669. , Synthesis, properties and applications, Ed. by Z.-G. Ye (Woodhead Publishing Ltd; Kolmogorov, A.N., Statistical theory of crystallization of metals (1937) Izv. Akad. Nauk USSR, Ser. Math., 3, pp. 355-359. , in Russian; Johnson, W.A., Mehl, R.F., Reaction kinetics in processes of nucleation and growth (1939) Trans. Am. Inst. Min. Met. Eng, 135, pp. 416-458; Avrami, M., Kinetics of phase change. I. General theory (1939) J. Chem. Phys, 7, pp. 1103-1112; Avrami, M., Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei (1940) J. Chem. Phys, 8, pp. 212-224; Avrami, M., Kinetics of phase change. III. Granulation, phase change, and microstructure (1941) J.Chem. Phys, 9, pp. 177-184; Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., Polarization reversal in congruent and stoichiometric lithium tantalate (2001) Appl. Phys. Lett, 79, pp. 3146-3148; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, pp. 157-167; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate (2000) SPIE Proc. Smart Structures and Materials, 3992, pp. 143-154
Correspondence Address Shur, V.Ya.; Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000, Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
Conference name 11th International Symposium on Ferroic Domains and Micro- to Nanoscopic Structures, ISFD 2012, and 11th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity, RCBJSF 2012
Conference date 20 August 2012 through 24 August 2012
Conference location Ekaterinburg
Conference code 96358
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus