Measurement of young's modulus and hardness of Al-50 wt % Sn alloy phases using nanoindentation / Chikova O.A., Shishkina E.V., Konstantinov A.N. // Physics of Metals and Metallography. - 2013. - V. 114, l. 7. - P. 616-622.

ISSN:
0031918X
Type:
Article
Abstract:
The nanoindentation method was used to measure the Young's modulus and hardness of the phases of the alloy Al-50 wt % Sn: α-aluminum and eutectic. Samples are obtained in different ways, i.e., traditionally via the transition of the melt into a homogeneous structural state by heating to a certain temperature, followed by cooling using the cooling rate greater by the order than that of the traditional method and via the addition of 0.06 wt % Ti and 1 wt % Zr to the binary alloy. It has been found that the most significant effect of the Al-50 wt % Sn phases on the Young's modulus is the transition of the melt into a homogeneous structural state and the introduction of Zr into the melt. As part of the mathematical theory of elasticity, a numerical evaluation of the interfacial pressure that arises due to the difference between Young's modulus of α aluminum and eutectic has been performed. The calculation has showed that the extra pressure is nine times less for the alloy formed through the transition of the melt into a homogeneous structural state than for the alloy produced via a traditional way. © 2013 Pleiades Publishing, Ltd.
Author keywords:
hardness; nanoindentation; Young's modulus
Index keywords:
Cooling rates; Interfacial pressure; Mathematical theory; Nano-indentation methods; Sn alloys; Structural state; Young's Modulus; Aluminum; Computer simulation; Elastic moduli; Elasticity; Eutectics;
DOI:
10.1134/S0031918X1307003X
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890301121&doi=10.1134%2fS0031918X1307003X&partnerID=40&md5=12f3ea3a5a918f07ba78eb989aa0ae87
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890301121&doi=10.1134%2fS0031918X1307003X&partnerID=40&md5=12f3ea3a5a918f07ba78eb989aa0ae87
Affiliations Yeltsin' Ural Federal University, ul. Mira 19, Ekaterinburg 620002, Russian Federation; Ural State Pedagogical University, ul. Mashinostroitelei 11, Ekaterinburg 620083, Russian Federation
Author Keywords hardness; nanoindentation; Young's modulus
References Brodova, I.G., Popel, P.S., Barbin, N.M., Vatolin, N.A., (2005) Initial Melts As the Basis of Formation of Structure and Properties of Aluminum Alloys, , Ural. Otd. Ross. Akad. Nauk Ekaterinburg; Lykasov, D.K., Chikova, O.A., Optimization of the technology of alloying of the 2124 alloy by manganese on the basis of studying the connection of structure and properties of liquid and cast metal (2009) Rasplavy, No. 1, pp. 31-39; Markovets, M.P., (1979) Determination of Mechanical Properties of Metals from Hardness, , Mashinostroenie Moscow; Golovin, Y.I., Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review (2008) Phys. Solid State, 50, pp. 2205-2236. , 10.1134/S1063783408120019 1:CAS:528:DC%2BD1cXhsV2qu7zE; Mondolfo, L.F., (1976) Aluminum Alloys: Structure and Properties, , Butterworth London; Lyakishev, N.P., (1996) Phase Diagrams of Binary Metal Systems: A Handbook, , (eds) Mashinostroenie Moscow; Popel, P.S., Korzhavina Chikova, O.A., Region of existence of metastable microheterogeneity in Al-Sn melts (1989) Zh. Fiz. Khim., 63, pp. 838-841. , 1:CAS:528:DyaL1MXmtVagurY%3D; Korzhavina Chikova, O.A., Popel, P.S., Viscosity of Al-Sn melts (1989) Rasplavy, No, 5, pp. 116-119; Avraamov, Y.S., Kravchenkova, I.A., Shlyapin, A.D., New Al-based antifriction alloys (2010) Fiz. Khim. Obrab. Mater., No. 2, pp. 85-88; Zaidel, A.N., (2005) Errors in Measurements of Physical Values: A Textbook, , Lan' St. Petersburg; Golovin, Y.I., Ivolgin, V.I., Lebedkin, M.A., Sergunin, D.A., Regions of the existence of the Portevin-le Chatelier effect under the conditions of continuous room-temperature indentation of an Al-2.7% Mg alloy (2004) Phys. Solid State, 46, pp. 1671-1673. , 10.1134/1.1799185 1:CAS:528:DC%2BD2cXnvFCit7g%3D; Muskhelishvili, N.I., (1966) Some Basic Problems of the Elasticity Theory, , Nauka Moscow; Popel, P.S., Korzhavina Chikova, O.A., Mokeeva, L.V., Effect of temperature treatment of Al-Sn melt on the structure and properties of cast metal (1989) Tekhnol. Legk. Splavov, No. 4, pp. 87-91; Hantington, H.B., Elastic Constants of Crystals (1958) Solid State Physics, 7, pp. 214-353. , [Usp. Fiz. Nauk 74 (3), 461-520 (1961)]; Frantsevich, I.N., Voronov, F.F., Bakuta, S.A., (1982) Elastic Constants and Elasticity Modules of Metals and Non-Metals. A Handbook, , Naukova Dumka Kiev; Yurkova, A.I., Bilotsky, A.V., Byakova, A.V., Milman, Y.V., Mechanical properties of nanostructured iron produced by severe plastic deformation by friction (2009) Nanosistemy, Nanomaterialy, Nanotekhnoligii, 7, pp. 619-632. , 1:CAS:528:DC%2BC3cXlsFegu7o%3D; Nikanorov, S.P., Kardashev, B.K., (1985) Elasticity and Dislocation Anelasticity of Crystals, , Nauka Moscow; Malygin, G.A., Influence of the transverse size of samples with micro- and nano-grained structures on the yield and flow stresses (2012) Phys. Solid State, 54, pp. 559-567. , 10.1134/S1063783412030171 1:CAS:528:DC%2BC38XjvVSlsro%3D; Malygin, G.A., Plasticity and Strength of Micro- and Nanocrystalline Materials (2007) Phys. Solid State, 49, pp. 1013-1033. , 10.1134/S1063783407060017 1:CAS:528:DC%2BD2sXmslSrsbs%3D; Golovin, S.A., Pushkar, A., Levin, D.M., (1987) Elastic and Damping Properties of Structural Metallic Materials, , Metallurgiya Moscow; Golovin, Y.I., (2009) Nano-Indentation and Its Possibilities, , Mashinostroenie Moscow; Gogolinskii, K.V., L'Vova, N.A., Useinov, A.S., Application of scanning probe microscopes and nanohardness meters for studying mechanical properties of solid materials at a nanolevel (Review) (2007) Zavod. Labor. Diagn. Mater., 73 (6), pp. 28-36; Gorban, V.F., Pechkovskii, E.P., Firstov, S.A., Two ways of determination of hardness of modern materials by automatic indentation method (2008) Electron Microscopy and Hardness of Materials: Collection of Papers, pp. 11-23. , IPM NAN Ukraine Kiev; Liu, X., Zeng, M.Q., Ma, Y., Zhu, M., Melting behavior and the correlation of Sn distribution on hardness in nanostructured Al-Sn alloy (2009) Mater. Sci. Eng., A, 506, pp. 1-7. , 10.1016/j.msea.2008.12.054; Leibfried, G., Microscopic Theory of Mechanical and Thermal Properties of Crystals (1955) Handbuch der Physik, pp. 104-324. , S. Flügge (eds) Springer-Verlag Berlin
Correspondence Address Yeltsin' Ural Federal University, ul. Mira 19, Ekaterinburg 620002, Russian Federation
Language of Original Document English
Abbreviated Source Title Phys. Met. Metallogr.
Source Scopus