Nanoindentation study of the effect of the structural state of the melt on the crystal structure and mechanical properties of the phases in an Al-50 wt % Sn alloy / Chikova O.A., Konstantinov A.N., Shishkina E.V., Chezganov D.S. // Russian Metallurgy (Metally). - 2013. - V. 2013, l. 7. - P. 535-544.

ISSN:
00360295
Type:
Article
Abstract:
Nanoindentation is used to measure Young's modulus, the hardness, the plasticity, and the yield strength of the phases in Al-50 wt % Sn alloy samples prepared by a traditional method and using liquid-state homogenization. The effect of an increase in the cooling rate by an order of magnitude and alloying with 0.06 wt % Ti or 1 wt % Zr on the mechanical properties of the phases in the Al-50 wt % Sn alloy is studied. The most substantial effect on Young's modulus of the phases in the Al-50 wt % Sn alloy is found to be exerted by the homogenization of the metallic liquid and the introduction of zirconium in the alloy melt: the metal forming of an ingot is improved substantially. © 2013 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Alloy melt; Cooling rates; Liquid state; Metallic liquid; Sn alloys; Structural state; Young's Modulus; Alloys; Aluminum; Cerium alloys; Elastic moduli; Homogenization method; Liquids; Metal forming;
DOI:
10.1134/S0036029513070045
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887316409&doi=10.1134%2fS0036029513070045&partnerID=40&md5=6c00fe0f9a0c63971b192979b1c57f6a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887316409&doi=10.1134%2fS0036029513070045&partnerID=40&md5=6c00fe0f9a0c63971b192979b1c57f6a
Affiliations Ural Federal University, pr. Lenina 51, Yekaterinburg, 620083, Russian Federation; Ural State Pedagogical University, Yekaterinburg, 620083, Russian Federation
References Mondolfo, L.F., (1976) Aluminum Alloys: Structure and Properties, , London: Butterworths; Lyakishev, N.P., (1996) Phase Diagrams of Binary Metallic Systems: A Handbook, , Moscow: Mashinostroenie; Avramov, Y.S., Kravchenkova, I.A., Shlyapin, A.D., New antifriction aluminum-based alloys (2010) Fiz. Khim. Obrab. Mater., No. 2, pp. 85-88; Popel', P.S., Korzhavina Chikova, O.A., Mokeeva, L.V., Effect of heat treatment on an Al-Sn melt on the structure and properties of the as-cast metal (1989) Tekhn. Legkikh Splavov, No. 4, pp. 87-91; Brodova, I.G., Popel', P.S., Barbin, N.M., (2005) Initial Melts as the Base of Formation of the Structure and Properties of Aluminum Alloys, , Yekaterinburg: UrO RAN; Popel', P.S., Korzhavina Chikova, O.A., Field of metastable microheterogeneity in Al-Sn melts (1989) Zh. Fiz. Khim., 63 (3), pp. 838-841; Korzhavina Chikova, O.A., Popel', P.S., Viscosity of Al-Sn melts (1989) Rasplavy, No. 5, pp. 116-119; Mal'tsev, M.V., (1964) Structural Modification of Metals and Alloys, , Moscow: Metallurgiya; Golovin, Y.I., Nanoindentation and mechanical properties of materials on the nanoscale (review) (2008) Fiz. Tverd. Tela, 50 (12), pp. 2113-2142; Gogolinskii, K.V., L'vova, N.A., Useinov, A.S., Application of scanning electron microscopes and nanohardness testers to study the mechanical properties of solid materials at a nanolevel (2007) Zavod. Lab., 73 (6), pp. 28-36; Zaidel', A.N., (1968) Elementary Estimation of Measurement Errors, , Moscow: Nauka; Noskova, N.I., Korshunov, L.G., Korznikov, A.V., Microstructure and tribological properties of Al-Sn, Al-Sn-Pb, and Sn-Sb-Cu alloys subjected to severe plastic deformation (2008) Metalloved. Term. Obrab. Met., 12, pp. 34-40; Liu, X., Zeng, M.Q., Ma, Y., Zhu, M., Melting behavior and the correlation of Sn distribution on hardness in nanostructured Al-Sn alloy (2009) Mater. Sci. Eng. A, 506, pp. 1-7; Muskhelishvili, N.I., (1966) Some Basic Problems of the Mathematical Theory of Elasticity, , Moscow: Nauka; Esin, V.O., Pankin, G.N., Tarabaev, L.P., Anisotropy of the interface mobility and aluminum dendrite growth (1974) Fiz. Met. Metalloved., 38 (6), pp. 1256-1269; Kan, R.U., Haasen, P.T., (1983) Physical^Metallurgy, , Amsterdam: North Holland Publishing; Esin, V.O., Predominant growth directions of crystals with the cubic lattice (1965) Fiz. Met. Metalloved., 20 (6), pp. 226-229; Hantington, G., Elastic constants of crystals (1961) Usp. Fiz. Nauk, LXXIV (2), pp. 303-520; Frantsevich, I.N., Voronov, F.F., Bakuta, S.A., (1982) Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Handbook, , Kiev: Naukova Dumka; Nikanorov, S.P., Kardashev, B.K., (1985) Elasticity and Dislocation Inelasticity of Crystals, , Moscow: Nauka; Leibfried, G., (1963) Microscopic Theory of the Mechanical and Thermal Properties of Crystals, , Moscow: Fizmatgiz; Yurkova, A.I., Belotskii, A.V., Byakova, A.V., Mil'man, Y.V., Mechanical properties of nanostructured iron produced by severe plastic deformation by friction (2009) Nanosystems, Nanomaterials, Nanotechnologies, 7 (2), pp. 619-632; Pavlenko, D.V., Loskutov, S.V., Yatsenko, V.K., Gonchar, N.V., Structural changes in the surface layer of an EK79-ID alloy after hardening treatment (2003) Pis'ma Zh. Eksp. Teor. Fiz., 29 (8), pp. 79-83; Gorban', V.F., Pechkovskii, E.P., Firstov, S.A., Two methods for determining the hardness of modern materials by automatic indentation (2008) Electron Microscopy and Strength of Materials, p. 11. , Kiev: IPM; Smirnov, S.V., Ekzemplyarova Smirnova, E.O., Technique for the investigation of strain resistance with an atomic force microscope and nanohardness testers (2010) Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 1, pp. 68-69; Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., (1991) Physical Quantities: A Handbook, , Ed. by I. S. Grigor'ev and E. Z. Meilikhov (Energoatomizdat, Moscow)
Correspondence Address Chikova, O. A.; Ural Federal University, pr. Lenina 51, Yekaterinburg, 620083, Russian Federation; email: chik63@mail.ru
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus