Formation of broad domain boundary in congruent lithium niobate modified by proton exchange / Shur V.Y., Neradovskiy M.M., Dolbilov M.A., Lobov A.I., Zelenovskiy P.S., Ushakov A.D., Ushakova E.S., Quillier E., Baldi P., De Micheli M.P. // Ferroelectrics. - 2015. - V. 476, l. 1. - P. 146-155.

ISSN:
00150193
Type:
Article
Abstract:
The strong dependence of the domain kinetics on the applied field and the thickness of the surface layers produced by proton exchange has been revealed in congruent lithium niobate. The correlated nucleation leads to formation of self-assembled structures consisting of isolated domains. Formation of the nanodomains in front of the domain wall results in its continuous motion. The pronounced self-organization effect leads to formation of broad domain boundaries and ensembles of isolated nanodomains consisting of nanodomain chains and nets. The obtained effects were attributed to highly non-equilibrium switching conditions caused by retardation of the bulk screening of depolarization field. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Domain kinetics; Nanodomain structure; Self-assembling; Self-organized structures
Index keywords:
Lithium; Niobium compounds; Congruent lithium niobate; Depolarization fields; Domain kinetics; Nanodomain structures; Self assembled structures; Self organized structures; Self-assembling; Self-organi
DOI:
10.1080/00150193.2015.998946
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161294&doi=10.1080%2f00150193.2015.998946&partnerID=40&md5=e6475d207177660d279a6b921aed3057
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161294&doi=10.1080%2f00150193.2015.998946&partnerID=40&md5=e6475d207177660d279a6b921aed3057
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Laboratory of Condensed Matter Physics, University of Nice Sophia-Antipolis, Nice Cedex 2, France
Author Keywords Domain kinetics; Nanodomain structure; Self-assembling; Self-organized structures
References Lim, E.J., Fejer, M.M., Byer, R.L., Kozlovsky, W.J., Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide (1985) Electr. Lett., 25 (11), pp. 731-732; Lim, E.J., Fejer, M.M., Byer, R.L., Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide (1989) Electr. Lett., 25 (3), pp. 174-175; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics., 221, pp. 157-167; Shur, V.Ya., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics., 340, pp. 3-16; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO 3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl. Phys. Lett., 62 (5), pp. 435-436; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics., 236, pp. 129-144; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics., 340, pp. 49-62; Chanvillard, L., Aschiéri, P., Baldi, P., Ostrowsky, D.B., De Micheli, M., Huang, L., Bamford, D.J., Soft proton exchange on periodically poled LiNbO 3: A simple waveguide fabrication process for highly efficient nonlinear interactions (2000) Appl. Phys. Lett., 76, pp. 1089-1091; Byer, R.L., Quasi-phase-matched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592; Hum, D.S., Fejer, M.M., Quasi-phase-matching (2007) C. R. Phys., 8, pp. 180-198; Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., Kiguchi, T., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes (2005) J. Appl. Phys., 98, p. 014109; Fousek, J., Litvin, D.B., Cross, L.E., Domain geometry engineering and domain average engineering of ferroics (2001) J. Phys.: Cond. Matt., 13, pp. L33-L38; Shur, V.Ya., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics., 341, pp. 85-93; Shur, V.Ya., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99, p. 082901; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , Schmelzer J. W. P. ed. Weinheim: Wiley-VCH; Shur, V.Ya., Gruverman, A.L., Ponomarev, N.Yu., Tonkachyova, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Lett., 53 (12), pp. 615-619; Shur, V.Ya., Gruverman, A.L., Ponomarev, N.Yu., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics., 126, pp. 371-376; Shur, V.Ya., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., Domain structure of lead germanate (1989) Ferroelectrics., 98, pp. 29-49; Shur, V.Ya., Shishkin, E.I., Rumyantsev, E.L., Nikolaeva, E.V., Shur, A.G., Batchko, R., Fejer, M., Kitamura, K., Self-organization in LiNbO 3 and LiTaO 3. Formation of micro-and nano-scale domain patterns (2004) Ferroelectrics., 304, pp. 111-116; Dolbilov, M.A., Shur, V.Ya., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics., 442, pp. 82-91; Dolbilov, M.A., Shishkin, E.I., Shur, V.Ya., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics., 398, pp. 108-114; Shur, V.Ya., Kinetics of ferroelectric domains: Application of general approach to LiNbO 3 and LiTaO 3 (2006) J. Mater. Sci., 41 (1), pp. 199-210; Shur, V.Ya., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics., 269, pp. 195-200; Shur, V.Ya., Nano-and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, pp. 622-669. , Ye Z. G. ed. Synthesis, properties and applications, Woodhead Publishing Ltd. Cambridge; Shishkin, E.I., Nikolaeva, E.V., Shur, V.Ya., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation (2010) Ferroelectrics., 399, pp. 49-57; Alikin, D.O., Shishkin, E.I., Nikolaeva, E.V., Shur, V.Ya., Sarmanova, M.F., Ievlev, A.V., Nebogatikov, M.S., Gavrilov, N.V., Formation of self-assembled domain structures in lithium niobate modified by Ar ions implantation (2010) Ferroelectrics., 399, pp. 35-42; Shur, V.Ya., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with Ar ions. IEEE Trans (2012) Ultrason. Ferroelectr. Freq. Control, 59, pp. 1934-1941; Korkishko, Yu.N., Fedorov, V.A., (1999) Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics, , Cambridge: Cambridge International Science; Jackel, J.L., Rice, R.E., Veslka, J.J., Proton exchange for high-index waveguides in LiNbO 3 (1982) Appl. Phys. Lett., 41, pp. 607-608; De Micheli, M.P., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B., Papuchon, M., Independent control of index and profiles in proton-exchanged lithium niobate guides (1983) Opt. Lett., 8, pp. 114-115; Dolbilov, M.A., Shur, V.Ya., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., De Micheli, M.P., Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate (2008) Ferroelectrics, 374, pp. 14-19; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitch Poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett., 75 (12), pp. 1673-1675; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett., 76 (2), pp. 143-145; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO 3 and LiTaO 3 crystals (2011) J. Appl. Phys., 110, p. 052013; Shur, V.Ya., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802
Correspondence Address Neradovskiy, M.M.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus