Self-organized nanodomain structures arising in lithium tantalate and lithium niobate after pulse heating by infrared laser / Kosobokov M.S., Shur V.Y., Mingaliev E.A., Avdoshin S.V., Kuznetsov D.K. // Ferroelectrics. - 2015. - V. 476, l. 1. - P. 134-145.

ISSN:
00150193
Type:
Article
Abstract:
Formation of nanodomain structures during cooling after pulse heating by infrared laser has been studied in congruent lithium tantalate (CLT) and lithium niobate (CLN) single crystals. In situ study of the domain structure evolution allowed to reveal that in CLN the isolated domains appeared at the edges of the irradiated zone and grew to the center. In contrast, the quasi-regular stripe domain structure appeared in CLT near the edge of irradiated zone. The difference has been attributed to lower Curie temperature and larger pyroelectric coefficient of CLT. The self-organized domain structures can be used for periodical poling with submicron periods. Copyright © Taylor & Francis Group, LLC.
Author keywords:
Domain engineering; Nanodomains; Pulse laser heating; Pyroelectric field; Quasi-regular structures
Index keywords:
Infrared lasers; Niobium compounds; Single crystals; Domain engineering; Nano domain; Nanodomain structures; Periodical poling; Pyroelectric coefficients; Pyroelectric fields; Regular structure; Strip
DOI:
10.1080/00150193.2015.998938
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161246&doi=10.1080%2f00150193.2015.998938&partnerID=40&md5=81f25d70d1ea76effaaba5e756cc1b57
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937161246&doi=10.1080%2f00150193.2015.998938&partnerID=40&md5=81f25d70d1ea76effaaba5e756cc1b57
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords Domain engineering; Nanodomains; Pulse laser heating; Pyroelectric field; Quasi-regular structures
References Yamada, M., Saitoh, M., Ooki, H., Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO 3 crystals (1996) Appl. Phys. Lett., 69, pp. 3659-3661; Arizmendi, L., Photonic applications of lithium niobate crystals (2004) Phys. Status Solidi., 201, pp. 253-283; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592; Harris, S.E., Proposed backward wave oscillation in the infrared (1966) Appl. Phys. Lett., 9, pp. 114-116; Stivala, S., Busacca, A.C., Curcio, L., Oliveri, R.L., Riva-Sanseverino, S., Assanto, G., Continuous-wave backward frequency doubling in periodically poled lithium niobate (2010) Appl. Phys. Lett., 96, p. 111110; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics., 399, pp. 97-106; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., Interactions between light waves in a nonlinear dielectric (1962) Phys. Rev., 127, pp. 1918-1939; Franken, P., Ward, J., Optical harmonics and nonlinear phenomena (1963) Rev. Mod. Phys., 35, pp. 23-39; Burr, K.C., Tang, C.L., Arbore, M.A., Fejer, M.M., High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate (1997) Appl. Phys. Lett., 70, pp. 3341-3343; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) Comptes Rendus Phys., 8, pp. 180-198; Shur, V.Y., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics., 340, pp. 3-16; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO 3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl. Phys. Lett., 62, pp. 435-436; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics., 236, pp. 129-144; Sugita, T., Mizuuchi, K., Kitaoka, Y., Yamamoto, K., Ultraviolet light generation in a periodically poled MgO:LiNbO 3 waveguide (2001) Jpn. J. Appl. Phys., 40, pp. 1751-1753; Busacca, A.C., Sones, C.L., Apostolopoulos, V., Eason, R.W., Mailis, S., Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling (2002) Appl. Phys. Lett., 81, pp. 4946-4948; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics., 341, pp. 85-93; Shur, V.Y., Rumyantsev, E.L., Shur, A.G., Lobov, A.I., Kuznetsov, D.K., Shishkin, E.I., Nikolaeva, E.V., De Micheli, M.P., Nanoscale domain effects in ferroelectrics. Formation and evolution of self-Assembled structures in LiNbO 3 and LiTaO 3 (2007) Ferroelectrics., 354, pp. 145-157; Lobov, A.I., Shur, V.Y., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Shur, V.Ya., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl. Phys. Lett., 86, p. 022906; Mingaliev, E.A., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Lobov, A.I., Formation of stripe domain structures by pulse laser irradiation of LiNbO 3 crystals (2010) Ferroelectrics., 399, pp. 7-13; Kuznetsov, D.K., Shur, V.Y., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics., 373, pp. 133-138; Shur, V.Y., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99, p. 082901; Kuznetsov, D.K., Shur, V.Y., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., Nanoscale domain structuring in lithium niobate single crystals by pulse laser heating (2010) Ferroelectrics., 398, pp. 49-54; Shur, V.Y., Mingaliev, E.A., Lebedev, V.A., Kuznetsov, D.K., Fursov, D.V., Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals (2013) J. Appl. Phys., 113, p. 187211; Shur, V.Y., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., Micro-and nanodomain structures produced by pulse laser heating in congruent lithium tantalate (2013) Ferroelectrics., 443, pp. 95-102; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Lobov, A.I., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Discrete switching by growth of nano-scale domain rays under highly-nonequilibrium conditions in lithium niobate single crystals (2008) Ferroelectrics., 373, pp. 99-108; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Shishkin, E.I., Zelenovskii, P.S., Osipov, V.V., Ivanov, M.G., Platonov, V.V., Formation of nanodomain structures in lithium niobate as a result of pulsed laser irradiation (2008) Bull. Russ. Acad. Sci. Phys., 72, pp. 181-183
Correspondence Address Mingaliev, E.A.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus