Ferroelectric domain triggers the charge modulation in semiconductors (invited) / Morozovska A.N., Eliseev E.A., Ievlev A.V., Varenyk O.V., Pusenkova A.S., Chu Y.-H., Shur V.Y., Strikha M.V., Kalinin S.V. // Journal of Applied Physics. - 2014. - V. 116, l. 6.

ISSN:
00218979
Type:
Article
Abstract:
We consider a typical heterostructure "domain patterned ferroelectric film - ultra-thin dielectric layer - semiconductor," where the semiconductor can be an electrolyte, paraelectric or multi-layered graphene. Unexpectedly, we have found that the space charge modulation profile and amplitude in the semiconductor, that screens the spontaneous polarization of a 180-deg domain structure of ferroelectric, depends on the domain structure period, dielectric layer thickness and semiconductor screening radius in a rather non-trivial nonlinear way. Multiple size effects appearance and manifestation are defined by the relationship between these three parameters. In addition, we show that the concept of effective gap can be introduced in a simple way only for a single-domain limit. Obtained analytical results open the way for understanding of current-AFM maps of contaminated ferroelectric surfaces in ambient atmosphere as well as explore the possibilities of conductivity control in ultra-thin semiconductor layers. © 2014 AIP Publishing LLC.
Author keywords:
Index keywords:
Ferroelectric films; Ferroelectric materials; Modulation; Ambient atmosphere; Analytical results; Charge modulation; Ferroelectric domains; Ferroelectric surfaces; Multi-layered graphene; Semiconducto
DOI:
10.1063/1.4891310
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906309082&doi=10.1063%2f1.4891310&partnerID=40&md5=3237d564d5e662030f3899a339d93a5b
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 066817
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906309082&doi=10.1063%2f1.4891310&partnerID=40&md5=3237d564d5e662030f3899a339d93a5b
Affiliations Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028 Kyiv, Ukraine; Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, pr. Nauky, 03028 Kyiv, Ukraine; Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3, Krjijanovskogo, 03142 Kyiv, Ukraine; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Ural Federal University, 51, Lenina Ave, 620000 Ekaterinburg, Russian Federation; Radiophysical Faculty, Taras Shevchenko Kyiv National University, 4, pr. Akademika Hlushkova, 03022 Kyiv, Ukraine; Physics Faculty, Taras Shevchenko Kyiv National University, 4, pr. Akademika Hlushkova, 03022 Kyiv, Ukraine; Department of Material Science and Engineering, National Chiao-Tung University, Hsinchu, Taiwan; Institute of Physics, Academia Sinica, Taipei 105, Taiwan
References Scott, J.F., (2000) Ferroelectric Memories, , Springer Series in Advanced Microelectronics (Springer-Verlag, Berlin); Dawber, M., Rabe, K.M., Scott, J.F., (2005) Rev. Mod. Phys., 77, p. 1083. , 10.1103/RevModPhys.77.1083; Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Streiffer, S., (2006) J. Appl. Phys., 100, p. 051606. , 10.1063/1.2336999; Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-Mckinstry, S., Taylor, D.V., Damjanovic, D., (2007) J. Electroceram., 19, pp. 49-67. , 10.1007/s10832-007-9001-1; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, p. 827. , (Springer, Dordrecht); Fridkin, V., Ducharme, S., (2013) Ferroelectricity at the Nanoscale: Basics and Applications, , (Springer, Heidelberg, New York, Dordrecht, London); Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592. , 10.1142/S021886359700040X; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102. , 10.1364/JOSAB.12.002102; Shur, V.Ya., (2006) J. Mater. Sci., 41, pp. 199-210. , 10.1007/s10853-005-6065-7; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , in, edited by J. W. P. Schmelzer (Wiley-VCH, Weinheim), Cha 6; Shur, V.Ya., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, pp. 622-669. , in, edited by Z.-G. Ye (Woodhead Publishing Ltd); Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110 (5), p. 052013. , 10.1063/1.3623778; Thanh, T.-V., Chen, J.-W., Huang, P.-C., Huang, B.-C., Yeh, C.-H., Liu, H.-J., Eliseev, E.A., Chu, Y.-H., Ferroelectric control of the conduction at the LaAlO3/ SrTiO3 hetero-interface (2013) Adv. Mater., 25, p. 3357. , 10.1002/adma.201300757; Lines, M.E., Glass, A.M., (1977) Principles and Applications of Ferroelectric and Related Materials, p. 798. , (Clarendon Press, Oxford); Fridkin, V.M., (1980) Ferroelectrics Semiconductors, , (Consultant Bureau, New-York, London); Kalinin, S.V., Bonnell, D.A., (2001) Phys. Rev. B, 63, p. 125411. , 10.1103/PhysRevB.63.125411; Kalinin, S.V., Johnson, C.Y., Bonnell, D.A., (2002) J. Appl. Phys., 91, p. 3816. , 10.1063/1.1446230; Kalinin, S.V., Bonnell, D.A., (2004) Nano Lett., 4, p. 555. , 10.1021/nl0350837; Shur, V.Ya., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., (2011) J. Appl. Phys., 110 (5), p. 052017. , 10.1063/1.3624798; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2014) Nat. Phys., 10, pp. 59-66. , 10.1038/nphys2796; Tagantsev, A.K., Landivar, M., Colla, E., Setter, N., (1995) J. Appl. Phys., 78, p. 2623. , 10.1063/1.360122; Tagantsev, A.K., Gerra, G., (2006) J. Appl. Phys., 100, p. 051607. , 10.1063/1.2337009; Abe, K., Yanase, N., Yasumoto, T., Kawakubo, T., (2002) J. Appl. Phys., 91, p. 323. , 10.1063/1.1426249; Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., (2004) Science, 306, p. 666. , 10.1126/science.1102896; Sarma, S.D., Dam, S.A., Hwang, E.H., Rossi, E., (2011) Rev. Mod. Phys., 83, pp. 407-470. , 10.1103/RevModPhys.83.407; Nakamura, M., Hirasava, L., (2008) Phys. Rev. B, 77, p. 045429. , 10.1103/PhysRevB.77.045429; Min, H., Jain, P., Adam, S., Stiles, M.D., (2011) Phys. Rev. B, 83, p. 195117. , 10.1103/PhysRevB.83.195117; Crassee, I., Levallois, J., Van Der Morel, D., Walter, A.L., Seyller, Th., Kuzmenko, A.B., (2011) Phys. Rev. B, 84, p. 035103. , 10.1103/PhysRevB.84.035103; Wei, Z., Ni, Z., Bi, K., Chen, M., Chen, Y., (2011) Carbon, 49, p. 2653. , 10.1016/j.carbon.2011.02.051; McClure, J.W., (1956) Phys. Rev., 104, p. 666. , 10.1103/PhysRev.104.666; McCann, E., (2006) Phys. Rev. B, 74, pp. 161403R. , 10.1103/PhysRevB.74.161403; Pereira, V.M., Neto, A.H.C., Peres, N.M.R., (2009) Phys. Rev. B, 80, p. 045401. , 10.1103/PhysRevB.80.045401; Gradinar, D.A., Schomreus, H., Falko, V.I., (2012) Phys. Rev. B, 85, p. 165429. , 10.1103/PhysRevB.85.165429; Santos, J.M.B.L.D., Peres, N.M.R., Neto, A.H.C., (2007) Phys. Rev Lett., 99, p. 256802. , 10.1103/PhysRevLett.99.256802; Tabert, C.J., Nicol, E.J., (2013) Phys. Rev. B, 87, pp. 121402R. , 10.1103/PhysRevB.87.121402; Lytovchenko, V.G., Strikha, M.V., Klyui, M.I., (2011) Ukr. J. Phys., 56, pp. 175-178; Zheng, Yi., Ni, G.-X., Toh, C.-T., Zeng, M.-G., Chen, S.-T., Yao, K., Özyilmaz, B., (2009) Appl. Phys. Lett., 94, p. 163505. , 10.1063/1.3119215; Zheng, Yi., Ni, G.-X., Toh, C.-T., Tan, C.-Y., Yao, K., Özyilmaz, B., (2010) Phys. Rev. Lett., 105, p. 166602. , 10.1103/PhysRevLett.105.166602; Hong, X., Hoffman, J., Posadas, A., Zou, K., Ahn, C.H., Zhu, J., (2010) Appl. Phys. Lett., 97, p. 033114. , 10.1063/1.3467450; Zheng, Yi., Ni, G.-X., Bae, S., Cong, C.-X., Kahya, O., Toh, C.-T., Kim, H.R., Ozyilmaz, B., (2011) Europhys. Lett., 93, p. 17002. , 10.1209/0295-5075/93/17002; Song, E.B., Lian, B., Kim, S.M., Lee, S., Chung, T.-K., Wang, M., Zeng, C., Wang, K.L., (2011) Appl. Phys. Lett., 99, p. 042109. , 10.1063/1.3619816; Ni, G.-X., Zheng, Yi., Bae, S., Yawtan, C., Kahya, O., Wu, J., Hong, B.H., Ozyilmaz, B., (2012) ACS Nano, 6, pp. 3935-3942. , 10.1021/nn3010137; Morozovska, A.N., Strikha, M.V., (2013) J. Appl. Phys., 114, p. 014101. , 10.1063/1.4812244; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , (Thomson Learning, Toronto); Strikha, M., (2012) Ukr. J. Phys. Opt., 13, pp. S5. , 10.3116/16091833/13/1/S5/2012; http://dx.doi.org/10.1063/1.4891310, See supplementary material at E-JAPIAU-116-593491 for details of calculations; Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X., (2011) Nature, 474, p. 64. , 10.1038/nature10067
Publisher American Institute of Physics Inc.
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus