Ionic field effect and memristive phenomena in single-point ferroelectric domain switching / Ievlev A.V., Morozovska A.N., Eliseev E.A., Shur V.Y., Kalinin S.V. // Nature Communications. - 2014. - V. 5, l. .

ISSN:
20411723
Type:
Article
Abstract:
Electric field-induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science and optoelectronics. Recently, much attention has been focused on the switching of individual domains using scanning probe microscopy. The classical picture of tip-induced switching, including formation of cylindrical domains with size, is largely determined by the field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behaviour. Here we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviours are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). © 2014 Macmillan Publishers Limited. All rights reserved.
Author keywords:
Index keywords:
cylinder; electric field; information technology; microscopy; morphology; reaction kinetics; article; electric field; electric potential; ferroelectric material; humidity; information technology; ion
DOI:
10.1038/ncomms5545
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905247297&doi=10.1038%2fncomms5545&partnerID=40&md5=18c00b53a9e90ce87ad8d6d331198c12
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 4545
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905247297&doi=10.1038%2fncomms5545&partnerID=40&md5=18c00b53a9e90ce87ad8d6d331198c12
Affiliations Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, United States; Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauki, 03028 Kiev, Ukraine; Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3, Krjijanovskogo, 03142 Kiev, Ukraine; Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin avenue, 620000 Ekaterinburg, Russian Federation
References Gleick, J., (2012) The Information: A History A Theory A Flood, 544. , Vintage; Sze, S., Ng, K., (2006) Physics of Semiconductor Devices, 832. , Wiley; Waser, R., (2012) Nanoelectronics Information Technology, , Wiley; Wolf, S.A., Spintronics: A spin-based electronics vision for the future (2001) Science, 294, pp. 1488-1495; Zutic, I., Fabian, J., Das Sarma, S., Spintronics: Fundamentals and applications (2004) Rev. Mod. Phys., 76, pp. 323-410; Tokura, Y., Nagaosa, N., Orbital physics in transition-metal oxides (2000) Science, 288, pp. 462-468; Bibes, M., Villegas, J.E., Barthelemy, A., Ultrathin oxide films and interfaces for electronics and spintronics (2011) Adv. Phys., 60, pp. 5-84; Tsymbal, E.Y., Kohlstedt, H., Applied physics - Tunneling across a ferroelectric (2006) Science, 313, pp. 181-183; Mathews, S., Ramesh, R., Venkatesan, T., Benedetto, J., Ferroelectric field effect transistor based on epitaxial perovskite heterostructures (1997) Science, 276, pp. 238-240; Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., The missing memristor found (2008) Nature, 453, pp. 80-83; Jo, S.H., Nanoscale memristor device as synapse in neuromorphic systems (2010) Nano Lett., 10, pp. 1297-1301; Pershin, Y.V., Di Ventra, M., Memory effects in complex materials and nanoscale systems (2011) Adv. Phys., 60, pp. 145-227; Riordan, M., (1998) Crystal Fire: The Birth of the Information Age, , Blackstone Audiobooks; Pierce, M.S., Disorder-induced magnetic memory: Experiments and theories (2007) Phys. Rev. B, 75, p. 144406; Pierce, M.S., Disorder-induced microscopic magnetic memory (2005) Phys. Rev. Lett., 94, p. 017202; Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M., Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films (2002) Phys. Rev. Lett., 89, p. 097601; Rodriguez, B.J., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Paruch, P., Tybell, T., Triscone, J.M., Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films (2001) Appl. Phys. Lett., 79, p. 530; Cho, Y., Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy (2002) Appl. Phys. Lett., 81, p. 4401; Terabe, K., Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal (2003) Appl. Phys. Lett., 82, p. 433; Agronin, A., Dynamics of ferroelectric domain growth in the field of atomic force microscope (2006) J. Appl. Phys., 99, p. 104102; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110, p. 052017; Ievlev, A.V., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2014) Nat. Phys., 10, pp. 59-66; Polomoff, N., Premnath, R., Bosse, J., Huey, B., Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution (2009) J. Mater. Sci., 44, pp. 5189-5196; Kan, Y., Lu, X., Wu, X., Zhu, J., Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope (2006) Appl. Phys. Lett., 89, p. 262907; Jesse, S., Baddorf, A.P., Kalinin, S.V., Switching spectroscopy piezoresponse force microscopy of ferroelectric materials (2006) Appl. Phys. Lett., 88, p. 062908; Gruverman, A., Auciello, O., Tokumoto, H., Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy (1998) Annu. Rev. Mater. Sci., 28, pp. 101-123; Dahan, D., Molotskii, M., Rosenman, G., Rosenwaks, Y., Ferroelectric domain inversion: The role of humidity (2006) Appl. Phys. Lett., 89, p. 152902; Terabe, K., Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl. Phys. Lett., 81, p. 2044; Bühlmann, S., Colla, E., Muralt, P., Polarization reversal due to charge injection in ferroelectric films (2005) Phys. Rev. B, 72, p. 214120; Abplanalp, M., Fousek, J., Günter, P., Higher order ferroic switching induced by scanning force microscopy (2001) Phys. Rev. Lett., 86, pp. 5799-5802; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., Anomalous polarization inversion in ferroelectrics via scanning force microscopy (2007) Nanotechnology, 18, p. 095502; Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H., Nanoscale visualization and control of ferroelectric domains by atomic force microscopy (1995) Phys. Rev. Lett., 74, pp. 4309-4312; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys., 73, p. 056502; Jesse, S., Kalinin, S.V., Band excitation in scanning probe microscopy: Sines of change (2011) J. Phys. D Appl. Phys., 44, p. 464006; Ya Shur, V., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys., 112, p. 104113; Shishkin, E.I., Kinetics of the local polarization switching in stoichiometric LiTaO3 under electric field applied using the tip of scanning probe microscope (2006) Ferroelectrics, 340, pp. 129-136; Morita, T., Cho, Y., Polarization reversal anti-parallel to the applied electric field observed using a scanning nonlinear dielectric microscopy (2004) Appl. Phys. Lett., 84, pp. 257-259; Ievlev, A.V., Morozovska, A.N., Shur, V.Y., Kalinin, S.V., Humidity effects on tip-induced polarization switching in lithium niobate (2014) Appl. Phys. Lett., 104, p. 092908; Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L., Morozovska, A.N., Electromechanical detection in scanning probe microscopy: Tip models and materials contrast (2007) J. Appl. Phys., 102, p. 014109; Wang, R.V., Reversible chemical switching of a ferroelectric film (2009) Phys. Rev. Lett., 102, p. 4; Morozovska, A.N., Ferroelectric domain triggers the charge modulation in semiconductors J. Appl. Phys, , in press; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalite (2005) Phys. Rev. B, 71, p. 184110; Feder, J., (1988) Fractals, 283. , Springer; Cross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium (1993) Rev. Mod. Phys., 65, pp. 851-1112; Wright, C.D., Liu, Y., Kohary, K.I., Aziz, M.M., Hicken, R.J., Arithmetic and biologically-inspired computing using phase-change materials (2011) Advanced Mater., 23, pp. 3408-3413
Correspondence Address Ievlev, A.V.; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, United States; email: ievlevav@ornl.gov
Publisher Nature Publishing Group
Language of Original Document English
Abbreviated Source Title Nat. Commun.
Source Scopus