References |
Gleick, J., (2012) The Information: A History A Theory A Flood, 544. , Vintage; Sze, S., Ng, K., (2006) Physics of Semiconductor Devices, 832. , Wiley; Waser, R., (2012) Nanoelectronics Information Technology, , Wiley; Wolf, S.A., Spintronics: A spin-based electronics vision for the future (2001) Science, 294, pp. 1488-1495; Zutic, I., Fabian, J., Das Sarma, S., Spintronics: Fundamentals and applications (2004) Rev. Mod. Phys., 76, pp. 323-410; Tokura, Y., Nagaosa, N., Orbital physics in transition-metal oxides (2000) Science, 288, pp. 462-468; Bibes, M., Villegas, J.E., Barthelemy, A., Ultrathin oxide films and interfaces for electronics and spintronics (2011) Adv. Phys., 60, pp. 5-84; Tsymbal, E.Y., Kohlstedt, H., Applied physics - Tunneling across a ferroelectric (2006) Science, 313, pp. 181-183; Mathews, S., Ramesh, R., Venkatesan, T., Benedetto, J., Ferroelectric field effect transistor based on epitaxial perovskite heterostructures (1997) Science, 276, pp. 238-240; Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., The missing memristor found (2008) Nature, 453, pp. 80-83; Jo, S.H., Nanoscale memristor device as synapse in neuromorphic systems (2010) Nano Lett., 10, pp. 1297-1301; Pershin, Y.V., Di Ventra, M., Memory effects in complex materials and nanoscale systems (2011) Adv. Phys., 60, pp. 145-227; Riordan, M., (1998) Crystal Fire: The Birth of the Information Age, , Blackstone Audiobooks; Pierce, M.S., Disorder-induced magnetic memory: Experiments and theories (2007) Phys. Rev. B, 75, p. 144406; Pierce, M.S., Disorder-induced microscopic magnetic memory (2005) Phys. Rev. Lett., 94, p. 017202; Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M., Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films (2002) Phys. Rev. Lett., 89, p. 097601; Rodriguez, B.J., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Paruch, P., Tybell, T., Triscone, J.M., Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films (2001) Appl. Phys. Lett., 79, p. 530; Cho, Y., Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy (2002) Appl. Phys. Lett., 81, p. 4401; Terabe, K., Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal (2003) Appl. Phys. Lett., 82, p. 433; Agronin, A., Dynamics of ferroelectric domain growth in the field of atomic force microscope (2006) J. Appl. Phys., 99, p. 104102; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110, p. 052017; Ievlev, A.V., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2014) Nat. Phys., 10, pp. 59-66; Polomoff, N., Premnath, R., Bosse, J., Huey, B., Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution (2009) J. Mater. Sci., 44, pp. 5189-5196; Kan, Y., Lu, X., Wu, X., Zhu, J., Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope (2006) Appl. Phys. Lett., 89, p. 262907; Jesse, S., Baddorf, A.P., Kalinin, S.V., Switching spectroscopy piezoresponse force microscopy of ferroelectric materials (2006) Appl. Phys. Lett., 88, p. 062908; Gruverman, A., Auciello, O., Tokumoto, H., Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy (1998) Annu. Rev. Mater. Sci., 28, pp. 101-123; Dahan, D., Molotskii, M., Rosenman, G., Rosenwaks, Y., Ferroelectric domain inversion: The role of humidity (2006) Appl. Phys. Lett., 89, p. 152902; Terabe, K., Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl. Phys. Lett., 81, p. 2044; Bühlmann, S., Colla, E., Muralt, P., Polarization reversal due to charge injection in ferroelectric films (2005) Phys. Rev. B, 72, p. 214120; Abplanalp, M., Fousek, J., Günter, P., Higher order ferroic switching induced by scanning force microscopy (2001) Phys. Rev. Lett., 86, pp. 5799-5802; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., Anomalous polarization inversion in ferroelectrics via scanning force microscopy (2007) Nanotechnology, 18, p. 095502; Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H., Nanoscale visualization and control of ferroelectric domains by atomic force microscopy (1995) Phys. Rev. Lett., 74, pp. 4309-4312; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys., 73, p. 056502; Jesse, S., Kalinin, S.V., Band excitation in scanning probe microscopy: Sines of change (2011) J. Phys. D Appl. Phys., 44, p. 464006; Ya Shur, V., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys., 112, p. 104113; Shishkin, E.I., Kinetics of the local polarization switching in stoichiometric LiTaO3 under electric field applied using the tip of scanning probe microscope (2006) Ferroelectrics, 340, pp. 129-136; Morita, T., Cho, Y., Polarization reversal anti-parallel to the applied electric field observed using a scanning nonlinear dielectric microscopy (2004) Appl. Phys. Lett., 84, pp. 257-259; Ievlev, A.V., Morozovska, A.N., Shur, V.Y., Kalinin, S.V., Humidity effects on tip-induced polarization switching in lithium niobate (2014) Appl. Phys. Lett., 104, p. 092908; Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L., Morozovska, A.N., Electromechanical detection in scanning probe microscopy: Tip models and materials contrast (2007) J. Appl. Phys., 102, p. 014109; Wang, R.V., Reversible chemical switching of a ferroelectric film (2009) Phys. Rev. Lett., 102, p. 4; Morozovska, A.N., Ferroelectric domain triggers the charge modulation in semiconductors J. Appl. Phys, , in press; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalite (2005) Phys. Rev. B, 71, p. 184110; Feder, J., (1988) Fractals, 283. , Springer; Cross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium (1993) Rev. Mod. Phys., 65, pp. 851-1112; Wright, C.D., Liu, Y., Kohary, K.I., Aziz, M.M., Hicken, R.J., Arithmetic and biologically-inspired computing using phase-change materials (2011) Advanced Mater., 23, pp. 3408-3413 |