Growth and nonlinear optical properties of β-glycine crystals grown on pt substrates / Seyedhosseini E., Ivanov M., Bystrov V., Bdikin I., Zelenovskiy P., Shur V.Y., Kudryavtsev A., Mishina E.D., Sigov A.S., Kholkin A.L. // Crystal Growth and Design. - 2014. - V. 14, l. 6. - P. 2831-2837.

ISSN:
15287483
Type:
Article
Abstract:
Glycine is the simplest amino acid and one of the basic and important elements in biology, as it serves as a building block for proteins. The interest in this material has recently arisen from its useful functional properties, such as its high value of nonlinear optical susceptibility and ferroelectricity. Three polymorphic forms with different physical properties are possible in glycine, the most useful β-polymorph being much less stable than the other two. In this work, we could grow stable microcrystals of β-glycine using a (111)Pt/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were evaluated using X-ray diffraction analysis and Raman spectroscopy. A second harmonic generation (SHG) method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential use of stable β-glycine crystals in nonlinear optical applications is discussed. © 2014 American Chemical Society.
Author keywords:
Index keywords:
Biology; Crystal symmetry; Nonlinear optics; Optical data processing; Quartz; Substrates; X ray diffraction analysis; Computational molecular modeling; Functional properties; Non-linear optical proper
DOI:
10.1021/cg500111a
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901951840&doi=10.1021%2fcg500111a&partnerID=40&md5=a594ec97388cbf1f290b452290296267
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901951840&doi=10.1021%2fcg500111a&partnerID=40&md5=a594ec97388cbf1f290b452290296267
Affiliations Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Mechanical Engineering and TEMA, University of Aveiro, 3810-193 Aveiro, Portugal; Institute of Mathematical Problems of Biology, 142290 Pushchino, Russian Federation; Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg, Russian Federation; Moscow State Institute of Radioengineering, Electronics, and Automation, 119454 Moscow, Russian Federation
Funding Details 13-02-01391-a, RFBR, Russian Foundation for Basic Research; 290158, EC, Russian Foundation for Basic Research
References Elsila, J.E., Dworkin, J.P., Bernstein, M.P., Sandford, S.A., (2007) Astrophys. J., 660, pp. 911-918; Pervolich, G.L., Hansen, L.K., Bauer-Brandl, A.J., (2001) Therm. Anal. Calorim., 66, pp. 699-715; Albrecht, G., Corey, R.B.J., (1939) Am. Chem. Soc., 61, pp. 1087-1103; Iitaka, Y., (1961) Acta Crystallogr., 14, pp. 1-10; Iitaka, Y., (1960) Acta Crystallogr., 13, pp. 35-45; Irimia-Vladu, M., Troshin, P.A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Bauer, S., (2010) Adv. Funct. Mater., 20, pp. 4069-4076; Hofmann, G., Neumann, N., Budzier, H., (1992) Ferroelectrics, 133, pp. 41-45; Pepinsky, R., Vedam, K., Hoshino, S., Okaya, Y., (1958) Phys. Rev., 111, pp. 430-432; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Tselev, A., Kholkin, A.L., (2012) Adv. Funct. Mater., 22, pp. 2996-3003; Ksanda, C.J., Tunell, G., (1938) Am. J. Sci., 35, pp. 173-178; Drebushchak, V.A., Boldyreva, E.V., Drebushchak, T.N., Shutova, E.S., (2002) J. Cryst. Growth, 241, pp. 266-268; Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskaya, Y.A., Shutova, E.S., (2003) J. Therm. Anal. Calorim., 73, pp. 409-418; Sander, A., Penović, T., Šipušić, J., (2011) Cryst. Res. Technol., 46, pp. 145-152; Surovtsev, N.V., Adichtchev, S.V., Malinovsky, V.K., Ogienko, A.G., Drebushchak, V.A., Manakov, A.Yu., Ancharov, A.I., Boldyreva, E.V., (2012) J. Chem. Phys., 137, pp. 0651031-06510310; Pyne, A., Suryanarayanan, R., (2001) Pharm. Res., 18, pp. 1448-1454; Hamilton, B.D., Hillmyer, M.A., Ward, M.D., (2008) Cryst. Growth Des., 8, pp. 3368-3375; Lee, A.Y., Lee, I.S., Myerson, A.S., (2006) Chem. Eng. Technol., 29, pp. 281-285; Lee, I.S., Kim, K.T., Lee, A.Y., Myerson, A.S., (2008) Cryst. Growth Des., 8, pp. 108-113; Isakov, D., De Matos Gomes, E., Bdikin, I., Almeida, B., Belsley, M., Costa, M., Rodrigues, V., Heredia, A., (2011) Cryst. Growth Des., 11, pp. 4288-4291; Van Santen, R.A., (1984) J. Phys. Chem., 88, pp. 5768-5769; Ferrari, E.S., Davey, R.J., Cross, W.I., Gillon, A.L., Towler, C.S., (2003) Cryst. Growth Des., 3, pp. 53-60; Olmsted, B.K., Ward, M.D., (2011) CrystEngComm, 13, pp. 1070-1073; Ernst, K.H., Christmann, K., (1989) Surf. Sci., 224, pp. 277-310; Huerta, F., Morallon, E., Cases, F., Rodes, A., Vazquez, J.L., Aldaz, A., (1997) J. Electroanal. Chem., 421, pp. 179-185; Marsh, R.E., (1958) Acta Crystallogr., 11, pp. 654-663; HyperChem (2002), Tools for Molecular Modeling (Release 7, 8). Professional Edition, , http://www.hyper.com/?tabid=360, Hypercube Inc. Gainesville, FL; Bdikin, I., Bystrov, V., Delgadillo, I., Gracio, J., Kopyl, S., Wojtas, M., Mishina, E., Kholkin, A.L., (2012) J. Appl. Phys., 111, p. 074104; Bystrov, V.S., Paramonova, E.V., Bdikin, I.K., Bystrova, A.V., Pullar, R.C., Kholkin, A.L., (2013) J. Mol. Model., 19, pp. 3591-3602; Bystrov, V.S., (2014) Physica B, 432, pp. 21-25; Boyd, R.W., (2003) Nonlinear Optics, , Academic Press: San Diego, CA; Gopalan, V., Raj, R., (1996) Appl. Phys. Lett., 68 (10), pp. 1323-1325; Mishina, E.D., Sherstyuk, N.E., Barskiy, D.R., Sigov, A.S., Golovko, Yu.I., Mukhorotov, V.M., Santo, M.De., Rasing, Th., (2003) J. Appl. Phys., 93, pp. 6216-6222; Salem, R., Foster, M.A., Turner, A.C., Geraghty, G.F., Lipson, M., Gaeta, A.L., (2008) Nat. Photonics, 2, pp. 35-38; Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., Cohen, R., Paniccia, M., (2007) Electron. Lett., 43, pp. 1196-1197; Rong, H., Liu, A., Jones, R., Cohen, O., Hak, D., Nicolaescu, R., Fang, A., Paniccia, M., (2005) Nature, 433, pp. 292-294; Hung, H.-S., Tang, C.-M., Lin, C.-H., Lin, S.-Z., Chu, M.-Y., Sun, W.-S., Kao, W.-C., Hsu, S.-H., (2013) PLoS One, 8, p. 65738; Han, J., Li, J., Jia, W., Yao, L., Li, X., Jiang, L., Tian, Y., (2014) Int. J. Nanomedicine, 9, pp. 517-526
Correspondence Address Seyedhosseini, E.; Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; email: seyedhosseini@ua.pt
Publisher American Chemical Society
CODEN CGDEF
Language of Original Document English
Abbreviated Source Title Cryst. Growth Des.
Source Scopus