The cation sublattice ordering in the ferroelectric LiNbO3:Zn single crystals / Palatnikov M.N., Sidorov N.V., Yanichev A.A., Gabain A.A., Kruk A.A., Bormanis K.Y., Shur V.Y. // Ferroelectrics. - 2014. - V. 462, l. 1. - P. 80-86.

ISSN:
00150193
Type:
Article
Abstract:
It has been revealed for the first time by Raman spectroscopy that in LiNbO3:Zn crystal with Zn2+ concentration range 0.03-0.94 mol.% the ordering of the main doping cations and vacant octahedrons along the polar axis is better than in the undoped crystal of congruent composition. Thus, the configuration of oxygen octahedrons is closer to ideal. The line widths of the Raman spectra in this concentration range are narrower than in congruent LiNbO3 crystals and closer to the line width in stoichiometric crystals with the best known cation ordering. As far as Zn2+ concentration is small, the growth technique changes very slightly compared to the growth of the pure LiNbO3 crystals. Copyright © 2014 Taylor & Francis Group, LLC.
Author keywords:
effect of doping; Lithium niobate; Raman spectroscopy
Index keywords:
Positive ions; Raman spectroscopy; Single crystals; Cation ordering; Concentration ranges; Congruent compositions; Effect of doping; Growth techniques; Lithium niobate; Stoichiometric crystals; Undope
DOI:
10.1080/00150193.2014.890881
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899709706&doi=10.1080%2f00150193.2014.890881&partnerID=40&md5=4b6857abb895fa78f8a9d4d4e1d8f604
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899709706&doi=10.1080%2f00150193.2014.890881&partnerID=40&md5=4b6857abb895fa78f8a9d4d4e1d8f604
Affiliations Institute of Chemistry, Kola Science Centre, RAS, Apatity, Murmansk Region, Russian Federation; Institute of Solid State Physics, University of Latvia, Riga, Latvia; Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords effect of doping; Lithium niobate; Raman spectroscopy
Funding Details 12-03-00515-a, RFBR, Russian Foundation for Basic Research
References Sidorov, N.V., Volk, T.R., Mavrin, B.N., Kalinnikov, V.T., (2003) Lithium Niobate: Defects, Photorefraction, Vibrational Spectra, Polaritons, , Moscow: Science; Chernaya, T.S., Maksimov, B.A., Volk, T.R., Rubinina, N.M., Simonov, V.I., Zn atoms in lithium niobate and the mechanisms of their location (2003) JETP Lett., 73 (2), pp. 103-106; Chernaya, T.S., Volk, T.R., Verin, I.A., Simonov, V.I., The threshold concentrations of zinc doped lithium niobate crystals and structure position (2008) Cryst Rep., 53 (4), pp. 612-617; Xin, F., Zhang, G., Bo, F., Sun, H., Kong, Y., Xu, J., Volk, T., Rubinina, N., Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals (2010) J Appl Phys., 107, pp. 1-7; Quintanilla, M., Rodriguez, M., Cantelar, E., Cusso, F., Domingo, C., Micro-Raman characterization of Zn-diffused channel waveguides in Tm 3+:LiNbO3 (2010) Optics Express, 18 (6), pp. 5449-5458; Jermann, F., Simon, M., Krätzig, E., Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities (1995) J Opt Soc Am B., 12, pp. 2066-2070; Nevado, R., Lifante, G., Low-loss, damage-resistant optical waveguide in Zn-diffused LiNbO 3by two step procedure (2001) Appl Phys A, 72 (6), pp. 725-728; Nevado, R., Sada, C., Segato, F., Caccavale, F., Kling, A., Soares, J., Cantelar, E., Lifante, G., Compositional characterization of Zn-diffused lithium niobate waveguides (2001) Appl Phys B., 73, pp. 555-558; Zhang, Y., Xu, Y.H., Li, M.N., Zhao, Y.Q., Growth and properties of Zn doped lithium niobate crystal (2001) J Cryst Growth, 233, pp. 537-540; Zhao, L., Wang, X., Wang, B., Wen, W., Zhang, T., ZnO doped LiNbO3single crystals studies by X-ray and density measurements (2004) Appl Phys B, 78 (6), pp. 769-774; Palatnikov, M.N., The materials of electronic devices based on ferroelectric single crystals and ceramic solid solutions of niobates and tantalates of the alkali metal with micro- and nanostructures (2010) Apatity; Gunter, P., (2007) Photorefractive Materials and Their Applications, , Springer; Gorelic, V.S., The search of linked and continuous states of ferroelectric crystals by Raman spectra (1982) The PIAS Review, pp. 15-140; Sidorov, N.V., Mavrin, B.N., Chufyrev, P.G., Palatnikov, M.N., The phonon spectra of lithium niobate single crystals (2012) Apatity: KSC RAS; Ridah, A., Bourson, P., Fontana, M.D., Malovichko, G., The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3 (1997) J Phys: Condens Matter, 9, pp. 9687-9693; Sun, M.-L., Chia, C.-T., Hu, M.-L., Chang, J.Y., Tse, W.-S., Yang, Z.P., Cheng, H.H., Raman and IR-spectra of Zn-doped lithium niobate crystals (2004) J Appl Phys., 78 (3), pp. 355-358; Sandler, V.A., Sidorov, N.V., Palatnikov, M.N., The dielectric crystals: Symmetry and physical properties (2010) Apatity: The KSC RAS, (PART 2); Syuy, A.V., Litvinova, M.N., Goncharova, P.S., Sidorov, N.V., Palatnikov, M.N., Krishtop, V.V., Likhtin, V.V., Conversion of broadband thermal radiation in lithium niobate crystals of various compositions (2013) Tech Phys., 58 (5), pp. 730-734; Palatnikov, M.N., Sidorov, N.V., Birukova, I.V., Scherbina, O.B., Kalinnikov, V.T., The grained charge for lithium niobate growth (2011) Perspective Materials, 2, pp. 93-97; Abdi, F., Aillerie, M., Fontana, M., Bourson, P., Volk, T., Maximov, B., Sulyanov, S., Wöhlecke, M., Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals (1999) Appl Phys B., 68, pp. 795-799; Fedorova, E.P., Aleshina, L.A., Sidorov, N.V., Chufyrev, P.G., Yanichev, A.A., Palatnikov, M.N., Voskresenskij, V.M., Kalinnikov, V.T., Stoichiometry and doping effects on cation ordering in LiNbO 3crystals (2010) Inorg Mater, 46 (2), pp. 206-211
Correspondence Address Palatnikov, M.N.; Institute of Chemistry, Kola Science Centre, RAS, Apatity, Murmansk Region, Russian Federation; email: palat_mn@chemy.kolasc.net.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus