Temperature and composition-induced structural transitions in Bi 1-x la (Pr)x FeO3 ceramics / Karpinsky D.V., Troyanchuk I.O., Tovar M., Sikolenko V., Efimov V., Efimova E., Shur V.Y., Kholkin A.L. // Journal of the American Ceramic Society. - 2014. - V. 97, l. 8. - P. 2631-2638.

ISSN:
00027820
Type:
Article
Abstract:
Bi1-xLaxFeO3 and Bi1-xPr xFeO3 ceramics of the compositions near the morphotropic phase boundary have been studied by X-ray and neutron diffraction techniques and differential thermal analysis. The structural phases characterized by the long-range polar, antipolar, and nonpolar ordering as well as the phase coexistence regions have been identified using the diffraction data depending on the dopant concentration and temperature. As a result of these studies the three phase region has been observed for the Pr-doped compounds and the phase diagrams have been constructed. The detailed evolution of the structural parameters permitted to itemize the factors affecting the structural phase transitions and clarify the origin of the enhanced electromechanical properties in these materials. The performed structural analysis disclosed different character of the chemical bonds in the La- and Pr-doped BiFeO3 compounds. Further, the role of the rare-earth ions in the covalency of the chemical bonds is discussed. © 2014 The American Ceramic Society.
Author keywords:
Index keywords:
Bismuth compounds; Ceramic materials; Chemical bonds; Complexation; Differential thermal analysis; Materials properties; Neutron diffraction; Dopant concentrations; Electromechanical property; Morphot
DOI:
10.1111/jace.12978
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905484402&doi=10.1111%2fjace.12978&partnerID=40&md5=6ef01b8a74e679cd56356e0cc895667b
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905484402&doi=10.1111%2fjace.12978&partnerID=40&md5=6ef01b8a74e679cd56356e0cc895667b
Affiliations CICECO, Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro 3810-193, Portugal; Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka str. 19, Minsk 220072, Belarus; Helmholtz-Zentrum-Berlin for Materials and Energy, Berlin 14109, Germany; Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation; Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620000, Russian Federation; Nanofer Laboratory Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620000, Russian Federation
References Kan, D., Palova, L., Anbusathaiah, V., Cheng, C.J., Fujino, S., Nagarajan, V., Rabe, K.M., Takeuchi, I., Universal Behavior and Electric-Field-Induced Structural Transition in Rare-Earth-Substituted BiFeO3 (2010) Adv. Funct. Mater., 20 (7), pp. 1108-1115; Chu, Y.H., Zhan, Q., Yang, C.-H., Cruz, M.P., Martin, L.W., Zhao, T., Yu, P., Schlom, D.G., Low Voltage Performance of Epitaxial BiFeO3 Films on Si Substrates Through Lanthanum Substitution (2008) Appl. Phys. Lett., 92, pp. 102909-102911; Yuan, G.L., Or, S.W., Liu, J.M., Liu, Z.G., Structural Transformation and Ferroelectromagnetic Behavior in Single-Phase Bi1-xNdxFeO3 Multiferroic Ceramics (2006) Appl. Phys. Lett., 89, pp. 52905-52907; Lee, J.-H., Oak, M.-A., Choi, H.J., Son, J.Y., Jang, H.M., Rhombohedral-Orthorhombic Morphotropic Phase Boundary in BiFeO 3-Based Multiferroics: First-Principles Prediction (2012) J. Mater. Chem., 22 (4), pp. 1667-1672; González-Vázquez, O.E., Wojdeł, J.C., Diéguez, O., Íñiguez, J., First-Principles Investigation of the Structural Phases and Enhanced Response Properties of the BiFeO3-LaFeO3 Multiferroic Solid Solution (2012) Phys. Rev. B, 85 (6), pp. 64119-64128; Damjanovic, D., A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension (2010) Appl. Phys. Lett., 97, pp. 62906-62908; Shen, W., Bell, A., Karimi, S., Reaney, I.M., Local Resistive Switching of Nd Doped BiFeO3 Thin Films (2012) Appl. Phys. Lett., 100 (13), pp. 133505-133509; Karpinsky, D.V., Troyanchuk, I.O., Vidal, J.V., Sobolev, N.A., Kholkin, A.L., Enhanced Ferroelectric, Magnetic and Magnetoelectric Properties of Bi1-xCaxFe1-xTixO3 Solid Solutions (2011) Solid State Commun., 151, pp. 536-540; Karpinsky, D.V., Troyanchuk, I.O., Sikolenko, V., Efimov, V., Kholkin, A.L., Electromechanical and Magnetic Properties of BiFeO3-LaFeO 3-CaTiO3 Ceramics Near the Rhombohedral-Orthorhombic Phase Boundary (2013) J. Appl. Phys., 113, pp. 187218-187223; Karpinsky, D.V., Pullar, R.C., Fetisov, Y.K., Kamentsev, K.E., Kholkin, A.L., Local Probing of Magnetoelectric Coupling in Multiferroic Composites of BaFe12O19-BaTiO3 (2010) J. Appl. Phys., 108 (4), pp. 42012-42016; Chen, X., Hu, G., Wu, W., Yang, C., Wang, X., Fan, S., Large Piezoelectric Coefficient in Tb-Doped BiFeO3 Films (2010) J. Am. Ceram. Soc., 93 (4), pp. 948-950; Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Khomchenko, V.A., Kakazei, G.N., Araujo, J.P., Tovar, M., Kholkin, A.L., Isothermal Structural Transitions, Magnetization and Large Piezoelectric Response in Bi1-xLaxFeO3 Perovskites (2011) Phys. Rev. B, 83 (5), pp. 54109-54115; Le Bras, G., Bonville, P., Colson, D., Forget, A., Genand-Riondet, N., Tourbot, R., Effect of la Doping in the Multiferroic Compound BiFeO3 (2011) Phys. B, 406 (8), pp. 1492-1495; Schönau, K.A., Schmitt, L.A., Knapp, M., Fuess, H., Eichel, R.-A., Kungl, H., Hoffmann, M.J., Nanodomain Structure of Pb[Zr1-xTix]O3 at its Morphotropic Phase Boundary: Investigations from Local to Average Structure (2007) Phys. Rev. B, 75 (18), pp. 184117-184126; Bhattacharyya, S., Jinschek, J.R., Cao, H., Wang, Y.U., Li, J., Viehland, D., Direct High-Resolution Transmission Electron Microscopy Observation of Tetragonal Nanotwins within the Monoclinic MC Phase of Pb(Mg 1/3Nb2/3)O3-0.35PbTiO3 Crystals (2008) Appl. Phys. Lett., 92 (14), pp. 142904-142906; Khachaturyan, A.G., Ferroelectric Solid Solutions with Morphotropic Boundary: Rotational Instability of Polarization, Metastable Coexistence of Phases and Nanodomain Adaptive States (2010) Philos. Mag., 90 (14), pp. 37-60; Noheda, B., Cox, D.E., Bridging Phases at the Morphotropic Boundaries of Lead Oxide Solid Solutions (2006) Phase Transitions, 79 (12), pp. 5-20; Agarwal, R.A., Sanghi, S., Ahlawat, A., Ahlawat, N., Structural Transformation and Improved Dielectric and Magnetic Properties in Ti-Substituted Bi0.8La0.2FeO3 Multiferroics (2012) J. Phys. D: Appl. Phys., 45 (16), pp. 165001-165009; Zhang, S.T., Pang, L.H., Zhang, Y., Lu, M.H., Chen, Y.F., Preparation, Structures, and Multiferroic Properties of Single Phase Bi1-xLaxFeO3 (x = 0-0.40) Ceramics (2006) J. Appl. Phys., 100 (11), pp. 114108-114113; Du, Y., Cheng, Z.X., Shahbazi, M., Collings, E.W., Dou, S.X., Wang, X.L., Enhancement of Ferromagnetic and Dielectric Properties in Lanthanum Doped BiFeO3 by Hydrothermal Synthesis (2010) J. Alloy. Compd., 490 (12), pp. 637-641; Levin, I., Tucker, M.G., Wu, H., Provenzano, V., Dennis, C.L., Karimi, S., Comyn, T., Reaney, I.M., Displacive Phase Transitions and Magnetic Structures in Nd-Substituted BiFeO3 (2011) Chem. Mater., 23 (8), pp. 2166-2175; Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Mantytskaya, O.S., Tereshko, N.V., Shut, V.N., Phase Transitions, Magnetic and Piezoelectric Properties of Rare-Earth-Substituted BiFeO3 Ceramics (2011) J. Am. Ceram. Soc., 94 (12), pp. 4502-4506; Karpinsky, D.V., Troyanchuk, I.O., Tovar, M., Sikolenko, V., Efimov, V., Kholkin, A.L., Evolution of Crystal Structure and Ferroic Properties of La-Doped BiFeO3 Ceramics Near the Rhombohedral-Orthorhombic Phase Boundary (2013) J. Alloy. Compd., 555, pp. 101-107; Karpinsky, D.V., Troyanchuk, I.O., Mantytskaya, O.S., Khomchenko, V.A., Kholkin, A.L., Structural Stability and Magnetic Properties of Bi1-xLa(Pr) xFeO3 Solid Solutions (2011) Solid State Commun., 151 (22), pp. 1686-1689; Rusakov, D.A., Abakumov, A.M., Yamaura, K., Belik, A.A., Van Tendeloo, G., Takayama-Muromachi, E., Structural Evolution of the BiFeO3-LaFeO3 System (2011) Chem. Mater., 23 (2), pp. 285-292; Rodriguez-Carvajal, J., Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction (1993) Phys. B, 192 (12), pp. 55-69; Coleman, W.F., Arumainayagam, C.R., HyperChem 5 (by Hypercube, Inc.) (1998) J. Chem. Educ., 75 (4), p. 416; Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., Crystal Chemistry and Domain Structure of Rare-Earth Doped BiFeO 3 Ceramics (2009) J. Mater. Sci., 44 (19), pp. 5102-5112; Liu, W., Ren, X., Large Piezoelectric Effect in Pb-Free Ceramics (2009) Phys. Rev. Lett., 103 (25), pp. 257602-257605; Zhou, C., Liu, W., Xue, D., Ren, X., Bao, H., Gao, J., Zhang, L., Triple-Point-Type Morphotropic Phase Boundary Based Large Piezoelectric Pb-Free Material-Ba(Ti0.8Hf0.2)O3-(Ba 0.7Ca0.3)TiO3 (2012) Appl. Phys. Lett., 100 (22), pp. 222910-222915; Palewicz, A., Przenioslo, R., Sosnowska, I., Hewat, A.W., Atomic Displacements in BiFeO3 as a Function of Temperature: Neutron Diffraction Study (2007) Acta Crystallogr., 63 (6), pp. 537-544; Corker, D.L., Glazer, A.M., Dec, J., Roleder, K., Whatmore, R.W., A Re-Investigation of the Crystal Structure of the Perovskite PbZrO 3 by X-ray and Neutron Diffraction (1997) Acta Crystallogr. Sect. B: Struct. Sci., 53 (1), pp. 135-142; Shoemaker, D.P., Seshadri, R., Tachibana, M., Hector, A.L., Incoherent Bi off-Centering in Bi2Ti2O 6O′ and Bi2Ru2O6O′: Insulator Versus Metal (2011) Phys. Rev. B, 84 (6), pp. 64117-64122
Correspondence Address Karpinsky, D.V.; CICECO, Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro 3810-193, Portugal; email: karpinski@ua.pt
Publisher Blackwell Publishing Inc.
CODEN JACTA
Language of Original Document English
Abbreviated Source Title J Am Ceram Soc
Source Scopus