References |
Gleick, J., (2008) Chaos Making A New Science, , Penguin Books; Strogatz, S.H., (2001) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, , Westview; Bunde, A., Havlin, S., (2012) Fractals and Disordered Systems, , Springer; Havlin, D., (2005) Diffusion and Reactions in Fractals and Disordered Systems, , (Cambridge Univ. Press; Barabasi, A.-L., Stanley, H.E., (1995) Fractal Concepts in Surface Growth, , (Cambridge Univ. Press; Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S., The analysis of observed chaotic data in physical systems (1993) Rev. Mod. Phys, 65, pp. 1331-1392; Ott, E., Grebogi, C., Yorke, J.A., Controlling chaos (1990) Phys. Rev. Lett, 64, pp. 1196-1199; Garstecki, P., Fuerstman, M.J., Whitesides, G.M., Oscillations with uniquely long periods in a microfluidic bubble generator (2005) Nature Phys, 1, pp. 168-171; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys, 69, pp. 2443-2474; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys, 73, p. 056502; Rodriguez, B.J., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett, 86, p. 012906; Woo, J., Quantitative analysis of the bit size dependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy (2001) J. Vac. Sci. Technol, B 19, pp. 818-824; Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M., Domain wall creep in epitaxial ferroelectric pb(zr0:2ti0:8)o3 thin films (2002) Phys. Rev. Lett, 89, p. 097601; Bonnell, D.A., Kalinin, S.V., Kholkin, A.L., Gruverman, A., Piezoresponse force microscopy: A window into electromechanical behavior at the nanoscale (2009) MRS Bull, 34, pp. 648-657; Tanaka, K., Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage (2008) Jpn J. Appl. Phys, 47, pp. 3311-3325; Shen, J., Study of asymmetric charge writing on pb(zr;ti)o3 thin films by kelvin probe force microscopy (2006) Appl. Surf. Sci, 252, pp. 8018-8021; Franke, K., Besold, J., Haessler, W., Seegebarth, C., Modification and detection of domains on ferroelectric pzt films by scanning force microscopy (1994) Surf. Sci, 302, pp. L283-L288; Morozovska, A.N., Piezoresponse force spectroscopy of ferroelectric-semiconductor materials (2007) J. Appl. Phys, 102, p. 114108; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, , Springer; Kalinin, S.V., Bonnell, D.A., Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements (2004) Nano Lett, 4, pp. 555-560; Kumar, A., Probing surface and bulk electrochemical processes on the laalo3-srtio3 interface (2012) ACS Nano, 6, pp. 3841-3852; Watanabe, Y., Okano, M., Masuda, A., Surface conduction on insulating batio3 crystal suggesting an intrinsic surface electron layer (2001) Phys. Rev. Lett, 86, pp. 332-335; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Springer; Kalinin, S.V., Bonnell, D.A., Local potential and polarization screening on ferroelectric surfaces (2001) Phys. Rev, B 63, p. 125411; Kalinin, S.V., Johnson, C.Y., Bonnell, D.A., Domain polarity and temperature induced potential inversion on the batio3(100) surface (2002) J. Appl. Phys, 91, pp. 3816-3823; Son, J.Y., Kyhm, K., Cho, J.H., Surface charge retention and enhanced polarization effect on ferroelectric thin films (2006) Appl. Phys. Lett, 89, p. 092907; Kim, Y., Hong, S., Kim, S.H., No, K., Surface potential of ferroelectric domain investigated by kelvin force microscopy (2006) J. Electroceram, 17, pp. 185-188; Rodriguez, B.J., Jesse, S., Baddorf, A.P., Kim, S.H., Kalinin, S.V., Controlling polarization dynamics in a liquid environment: From localized to macroscopic switching in ferroelectrics (2007) Phys. Rev. Lett, 98, p. 247603; Rodriguez, B.J., Jesse, S., Baddorf, A.P., Kalinin, S.V., High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy (2006) Phys. Rev. Lett, 96, p. 237602; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function (2007) J. Appl. Phys, 102, p. 074105; Morozovska, A.N., Eliseev, E.A., Bravina, S.L., Kalinin, S.V., Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution (2007) Phys. Rev, B 75, p. 174109; Kalinin, S.V., Quantitative determination of tip parameters in piezoresponse force microscopy (2007) Appl. Phys. Lett, 90, p. 212905; Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L., Morozovska, A.N., Electromechanical detection in scanning probe microscopy: Tip models and materials contrast (2007) J. Appl. Phys, 102, p. 014109; Molotskii, M.I., Shvebelman, M.M., Dynamics of ferroelectric domain formation in an atomic force microscope (2005) Phil. Mag, 85, pp. 1637-1655; Aravind, V.R., Correlated polarization switching in the proximity of a 180 degrees domain wall (2010) Phys. Rev. B, 82, p. 024111; Di Ventra, M., Pershin, Y.V., The parallel approach (2013) Nature Phys, 9, pp. 200-202; Pershin, Y.V., Di Ventra, M., Memory effects in complex materials and nanoscale systems (2011) Adv. Phys, 60, pp. 145-227; Spaldin, N.A., Fiebig, M., The renaissance of magnetoelectric multiferroics (2005) Science, 309, pp. 391-392; Wu, W.D., Horibe, Y., Lee, N., Cheong, S.W., Guest, J.R., Conduction of topologically protected charged ferroelectric domain walls (2012) Phys. Rev. Lett, 108, p. 077203; Seidel, J., Conduction at domain walls in oxide multiferroics (2009) Nature Mater, 8, pp. 229-234 |