In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation / Shur V.Y., Kuznetsov D.K., Mingaliev E.A., Yakunina E.M., Lobov A.I., Ievlev A.V. // Applied Physics Letters. - 2011. - V. 99, l. 8.

ISSN:
00036951
Type:
Article
Abstract:
The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation was studied by in situ optical observation. The average periods of the structures are much less than the sizes of the laser spots. The polarization reversal occurs through covering of the whole irradiated area by the nets of the spatially separated nanodomain chains and microdomain rays-hatching effect. The main stages of the anisotropic nanodomain kinetics: nucleation, growth, and branching, have been singled out. The observed abnormal domain kinetics was attributed to the action of the pyroelectric field arising during cooling after laser heating. © 2011 American Institute of Physics.
Author keywords:
Index keywords:
Average period; Domain kinetics; In-situ; Irradiated area; Laser spots; Lithium niobate; Microdomain; Nanodomain structures; Optical observations; Polarization reversals; Pulse laser irradiations; Pyr
DOI:
10.1063/1.3628646
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052412689&doi=10.1063%2f1.3628646&partnerID=40&md5=d4d1ed2be4d073fa18ca9f2480ae4961
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 082901
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052412689&doi=10.1063%2f1.3628646&partnerID=40&md5=d4d1ed2be4d073fa18ca9f2480ae4961
Affiliations Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation
References Yamada, M., Saitoh, M., Ooki, H., (1996) Appl. Phys. Lett., 69, p. 3659. , 10.1063/1.117015; Abernethy, J.A., Gawith, C.B.E., Eason, R.W., Smith, P.G.R., Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared (2002) Applied Physics Letters, 81 (14), p. 2514. , DOI 10.1063/1.1510964; Canalias, C., Pasiskevicius, V., Clemens, R., Laurell, F., (2003) Appl. Phys. Lett., 82, p. 4233. , 10.1063/1.1583144; Harris, S.E., (1966) Appl. Phys. Lett., 9, p. 114. , 10.1063/1.1754668; Stivala, S., Busacca, A.C., Curcio, L., Oliveri, R.L., Riva-Sanseverino, S., Assanto, G., (2010) Appl. Phys. Lett., 96, p. 1111100. , 10.1063/1.3364934; Armstrong, J.A., Bloembergen, N., Ducuing, J., Pershan, P.S., (1962) Phys. Rev., 127, p. 1918. , 10.1103/PhysRev.127.1918; Hum, D.S., Fejer, M.M., (2007) C. R. Phys., 8, p. 180. , 10.1016/j.crhy.2006.10.022; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Applied Physics Letters, 62 (5), pp. 435-436. , DOI 10.1063/1.108925; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., (1999) Ferroelectrics, 221, p. 157. , 10.1080/00150199908016450; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., (2000) Appl. Phys. Lett., 76, p. 143. , 10.1063/1.125683; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Applied Physics Letters, 86 (2), pp. 0229061-0229063. , DOI 10.1063/1.1849414, 022906; Shur, V.Ya., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., (2006) Ferroelectrics, 341, p. 85. , 10.1080/00150190600897075; Kuznetsov, D.K., Shur, V.Ya., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., (2008) Ferroelectrics, 373, p. 133. , 10.1080/00150190802409059; Prokhorov, A.M., Kuzminov, Y.S., (1990) Physics and Chemistry of Crystalline Lithium Niobate, , (Adam Hilger, Bristol); Gopalan, V., Jia, Q.X., Mitchell, T.E., (1999) Appl. Phys. Lett., 75, p. 2482. , 10.1063/1.125055; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Applied Physics Letters, 87 (2), pp. 1-3. , DOI 10.1063/1.1993769, 022905; Zelenovskiy, P., Fontana, M., Shur, V., Bourson, P., Kuznetsov, D., (2010) Appl. Phys. A, 99, p. 741. , 10.1007/s00339-010-5621-4; Shur, V.Ya., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) Journal of Materials Science, 41 (1), pp. 199-210. , DOI 10.1007/s10853-005-6065-7; Lobov, A.I., Ya. Shur, V., Kuznetsov, D.K., Negashev, S.A., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., (2008) Ferroelectrics, 373, p. 99. , 10.1080/00150190802408812; Kuznetsov, D.K., Shur, V.Ya., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., (2010) Ferroelectrics, 398, p. 49. , 10.1080/00150193.2010.489813; Ishizuki, H., Shoji, I., Taira, T., (2003) Appl. Phys. Lett., 82, p. 4062. , 10.1063/1.1582371
Correspondence Address Shur, V.Y.; Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083, Russian Federation; email: vladimir.shur@usu.ru
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus