References |
Velichkovski, B.T., Katsnelson, B.A., (1964) Etiology and Pathogenesis of Silicosis, , Moscow: Medizina Publishing House, (Russian); Oberdorster, G., Oberdörster, E., Oberdörster, J., Nanotoxicology: An emerging discipline evolving from studied of ultrafine particles (2005) Environ Health Persp, 113, pp. 823-839; Onishthchenko, G.G., Archakov, A.I., Bessonov, V.V., Bokitko, B.G., Hinzburg, A.L., Methodological approaches to the assessment of safety of nano-materials (2007) Methodological Problems of Research in and Assessment of Bio- and Nanotechnologies (Nano-scale Waves, Particles, Structures, Processes, Biologic Objects) in the Human Ecology and Environmental Protection, , Rakhmanin YuA, ed., Moscow: Sysin's Institute, (Russian); Li, N., Xia, T., Nel, A.E., The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles (2008) Free Rad Biol Med, 44, pp. 1689-1699; Donaldson, K., Stone, V., Tran, C.K., Kreyling, W., Borm, P.J., Nanotoxicology (editorial) (2004) Occup Environ Med, 61, pp. 727-728; Grassian, V.H., O'Shaughnessy, P.T., Adamcakova-Dodd, A., Pettibone, J.M., Thorne, P.S., Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm (2007) Environ Health Perspect, 115, pp. 397-402; Li, N., Sioutas, C., Cho, A., Schmits, D., Ch, M., Sempf, J., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage (2003) Environ Health Perspect, 111 (4), pp. 455-460; Kilburn, K.H., Alveolar clearance of particles. A bullfrog lung model (1969) Arch Environ Health, 18, pp. 556-563; Bastus, N.G., Casals, E., Socorro, V.-C., Puntes, V., Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media (2008) Nanotoxicol, 2, pp. 99-112; Warheit, D.B., Reed, K.L., Sayes, C.M., A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity (2009) Nanotoxicol, 3, pp. 181-187; Kreyling, W.G., Semmler, M., Erbe, P., Mayer, P., Takenaka, S., Schulz, H., Oberdorster, G., Ziesenis, A., Translocation of ultrafine insoluble iridium particles from lung epthelium to extrapulmonary organs is size dependent but very low (2002) J Toxicol Environ Health, 65 A, pp. 1513-1530; Semmler, M., Seitz, J., Erbe, E., Mayer, P., Heyder, J., Oberdorster, G., Kreylig, W.G., Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs (2004) Inhal Toxicol, 16, pp. 453-459; Renwick, L., Brown, D., Clouter, K., Donaldson, K., Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types (2004) Occup Environ Med, 61, pp. 442-447; Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, Y., Ouyang, H., Chai, L.I., Comparative study of pulmonary responses to nano- and submicron ferric oxide in rats (2008) Toxicol, 247, pp. 102-111; Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B., Donaldson, K., The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area (2007) Occup and Environ Med, 64 (9), pp. 609-615; Warheit, D.B., Webb, T.R., Colvin, V.L., Reed, K.L., Sayes, C.M., Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon particle size but on surface characteristics (2007) Toxicol Sci, 95, pp. 270-280; Gubin, S.P., Koksharov, Y.A., Homutov, G.B., Yurkov GY Magnetic nanoparticles: Generating methods, structure, and properties (2005) Uspekhi Chimii, 74, pp. 539-574. , Russian; Zhang, P.C., Bai, C., Huang, Y.M., Zhao, H., Fang, Y., Wang, N.X., Li, Q., Atomic force microscopy study of fine structures of the entire surface of red blood cells (1995) Scanning Microscopy, 9 (4), p. 981; Zaitsev, B.N., Durymanov, A.G., Generalov, V.M., Atomic force microscopy of the interaction of erythrocyte membrane and virus particles (2002) Proc Int Workshop "Scanning Probe Microscopy." Nizhny Novgorod, Russia; Lomonosov, A.M., Egorov, S.N., Gallyamov, M.O., Yaminsky, I.V., AFM of bacterial cells subjected to different factors (2003) Phys Low-dim Struct, 3-4, p. 125; Bolshakova, A.V., Kiselyova, O.I., Yaminsky, I.V., Microbial surfaces investigated using atomic force microscopy (2004) Biotechnol Progress, 20, p. 1615; Dubrovin, E.V., Voloshin, A.G., Kraevsky, S.V., Ignatyuk, T.E., Abramchuk, S.S., Yaminsky, I.V., Ignatov, S.G., Atomic force microscopy investigation of phage infection of bacteria (2008) Langmuir, 24, p. 13068; Lurje, Y.Y., (1973) Standardized Methods for Analyzing Waters, , Moscow: Khimiya Publising House, (Russian); Urbach, V.Yu., (1964) Biometric Methods (Statistical Treatment of Experimental Data in Biology Agriculture and Medicine), , 2nd ed. Moscow: Nauka Publishing House, (Russian); Xie, J., Ch, X., Hou, Y., Young, K.L., Wang, S.X., Pourmond, N., Sun, Sh., Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticled via trichloro-S-triazine (2006) Chem Mater, 18, pp. 5401-5403; Xie, J., Chen, K., Lee, H.-Y., Ch, X., Hsu, A.P., Peng, S., Chen, X., Sun, Ah., Ultra small c(RgDyK)-coated Fe3O4 nanoparticles and the,ir specific targeting to integrin ávâ3-rich tumor cells (2008) J Am Chem Soc, 130, pp. 7452-7453; Cho, W.S., Cho, M., Kim, S.R., Lee, J.Y., Han, B.S., Park, S.N., Yu, M.K., Leong, J., Pulmonary toxicity and kinetic study of Cy5,5-conju- gated superparamagnetic iron oxide nanoparticles by optical imaging (2009) Toxicol Appl Pharmacol, 239, pp. 106-115; Mahmoudi, M., Simchi, A., Imani, M., Milani, A.S., Stroeve, P., An in vitro study of bare and poly(ethylene glycol)-co-fumarate- coated supermagnetic iron oxide nanoparticles: A new toxicity identification procedure (2009) Nanotechnol, 20 (22), p. 225104. , June; Sager, T.M., Porter, D.W., Robinson, V.A., Lindsley, W.G., Schwegler-Berry, V.A., Castranova, V., Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity (2007) Nanotoxicol, 1, pp. 118-129; Katsnelson Baprivalova, L.I., Recruitment of pagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles (1984) Environ Health Perspect, 55, pp. 313-325; Privalova, L.I., Katsnelson, B.A., Osipenko, A.B., Yushkov, B.H., Babushkina, L.G., Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity (1980) Environ Health Perspect, 35, pp. 205-218; Privalova, L.I., Katsnelson, B.A., Yelnichnykh, L.N., Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels (1987) Brit J Ind Med, 44, pp. 228-235; Privalova, L.I., Katsnelson, B.A., Sharapova, N.Y., Kislitsina, N.S., On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis (1995) Medic Lavoro, 86, pp. 511-521; Klarisson, H.L., Gustaffson, J., Cronholm, P., Moller, L., Size-dependent toxicity of metal oxide particles - A comparison between nano- and micrometer size (2009) Toxicol Lett, 188, pp. 112-118; Stoeger, T., Reinhard, C., Sh, T., Schroeppel, A., Karg, E., Ritter, B., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice (2006) Environ Health Perspect, 114 (3), pp. 328-333; Katsnelson, B.A., Konysheva, L.K., Privalova, L.Y., Morosova, K.I., Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats (1992) Brit J Ind Med, 49, pp. 172-181; Katsnelson, B.A., Konyscheva, L.K., Sharapova, N.Y.E., Privalova, L.I., Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model (1994) Occup Environ Med, 51, pp. 173-180; Katsnelson, B.A., Konysheva, L.K., Privalova, L.Y., Sharapova, N.Y., Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles (1997) Inhalat Toxicol, 9, pp. 703-715; Zhu, M.T., Feng, W.Y., Wang, Y., Wang, B., Wang, M., Ouyang, H., Particokinetics and extrapulmonary translocation of intratra- cheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment (2009) Toxicol Sciences, 107 (2), pp. 342-351; Petin, L.M., Data for establishing the maximal allowable concentration of silica-containing condensation aerosols (1978) Gigiyena Truda, 6, pp. 28-33. , Russian; Podgayko, G.A., Katsnelson, B.A., Lemyasev, M.F., Solomina, S.N., Saitov, V.A., Russjayeva, L.V., New data for assessment of the silicosis risks due to industrial aerosols based on a colloidal solution of silicic acid (1982) Occupational Diseases Due to Dusts, (7). , Domnin SG and Katsnelson BA, eds., Moscow: Erisman's Institute, (Russian); Katsnelson, B.A., Privalova, L.I., Kislitsina, N.S., Podgaiko, G.A., Correlation between cytotoxicity and fibrogenicity of silicosis-inducing dusts (1984) Med Lavoro, 75, pp. 450-462; Katsnelson, B.A., Alekseyeva, O.G., Privalova, L.I., Polzik, E.V., (1995) Pneumoconioses: The Pathogenesis and Biological Prophylaxis, , Ekaterinburg: The Urals Branch of the RAS, (Russian) |