Lithium niobate and lithium tantalate-based piezoelectric materials / Shur V.Y. // Advanced Piezoelectric Materials: Science and Technology. - 2010. - V. , l. . - P. 204-238.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
This chapter discusses the influence of the tailored periodical nano- and micro-domain structures on the piezoelectric properties of LiNbO3 and LiTaO3 crystals. The chapter first reviews the main piezoelectric characteristics of LiNbO3 and LiTaO3 crystals and acoustic properties of the crystals with periodic laminar domain structure. The chapter then discusses the physical basis of nano- and micro-domain engineering in LiNbO3 and LiTaO3 crystals and application of the periodically poled LiNbO3 and LiTaO3 for light frequency conversion and generation of terahertz radiation. © 2010 Woodhead Publishing Limited All rights reserved.
Author keywords:
Generation of acoustic waves; Generation of terahertz radiation; Light frequency conversion; Nanoscale domains; Tailored periodical domain structure
Index keywords:
нет данных
DOI:
10.1533/9781845699758.1.204
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875883078&doi=10.1533%2f9781845699758.1.204&partnerID=40&md5=28fc606bb4c0913e34f9b4fb8d24c8c9
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875883078&doi=10.1533%2f9781845699758.1.204&partnerID=40&md5=28fc606bb4c0913e34f9b4fb8d24c8c9
Affiliations Institute of Physics and Applied Mathematics, Ural State University, 51 Lenin Ave, Ekaterinburg, Russian Federation
Author Keywords Generation of acoustic waves; Generation of terahertz radiation; Light frequency conversion; Nanoscale domains; Tailored periodical domain structure
References Armstrong, J.A., Bloembergen, N., Ducuing, J., Perhsan, P.S., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127 (6), pp. 1918-1939; Avetisyan, Y., Sasaki, Y., Ito, H., Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide (2001) Appl Phys B, 73, pp. 511-514; Bakker, H.J., Hunsche, S., Kurz, H., Investigation of anharmonic lattice vibrations with coherent phonon polaritons (1994) Phys Rev B, 50, pp. 914-920; Ballman, A.A., Growth of piezoelectric and ferroelectric materials by the Czochralski technique (1965) J Am Ceramic Soc, 48 (2), pp. 112-113; Bass, M., Franken, P.A., Ward, J.F., Weinreich, G., Optical rectification (1962) Phys Rev Lett, 9, pp. 446-448; Batchko, R.G., Shur, V., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl Phys Lett, 75 (12), pp. 1673-1675; Batchko, R., Miller, G., Byer, R., Shur, V., Fejer, M., (2003) Backswitch poling method for domain patterning of ferroelectric materials, , US Patent No. 6,542,285 B1 April 1; Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., Hanna, D.C., Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal (2000) Phys Rev Lett, 84, pp. 4345-4348; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonl Opt Phys Mats, 6, pp. 549-592; Chen, Y.L., Xu, J.J., Chen, X.J., Kong, Y.F., Zhang, G.Y., Domain reversion process in near-stoichiometric LiNbO3 crystals (2001) Opt Commun, 188, pp. 359-364; Cheng, S.D., Zhu, Y.Y., Lu, Y.L., Ming, N.B., Growth and transducer properties of an acoustic superlattice with its periods varying gradually (1995) Appl Phys Lett, 66, pp. 291-292; Ding, Y.J., Kurgin, J.B., A new scheme for generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate (1998) Optic Comm, 148, pp. 105-109; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland, Amsterdam; Fedulov, S.A., Shapiro, I., Ladyzhenski, P.B., Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals (1965) Kristallografiya, 10 (2), pp. 268-269; Feng, D., Ming, N.B., Hong, J.F., Yang, Y.S., Zhu, J.S., Yang, Z., Wang, Y.N., Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains (1980) Appl Phys Lett, 37, pp. 607-609; Ferguson, B., Zhang, X.-C., Materials for terahertz science and technology (2002) Nature Mater, 1, pp. 26-33; Franken, P.A., Ward, J.F., Optical harmonics and nonlinear phenomena (1963) Rev Mod Phys, 35 (1), pp. 23-39; Fridkin, V.M., (1980) Ferroelectrics Semiconductors, , Consultants Bureau, New York; Furukawa, Y., Kitamura, K., Niwa, K., Hatano, H., Bernasconi, P., Montemezzani, G., Gunter, P., Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range (1999) Jpn J Appl Phys, 38, pp. 1816-1819; Giordmaine, J.A., Mixing of light beams in crystals (1962) Phys Rev Lett, 8 (1), pp. 19-20; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V., Characterization of PPLN-microstructures by means of Raman spectroscopy (2008) Appl Phys A Mater Sci Process, 91, pp. 65-67; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) C R Physique, 8, pp. 180-198; IRE standards on piezoelectric crystals: the electromechanical coupling factor (1958) Proc IRE, 46, pp. 764-778. , IRE; Ishizuki, H., Taira, T., High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm×5mm aperture (2005) Opt Lett, 30, pp. 2918-2920; Janovec, V., Anti-parallel ferroelectric domain in surface space-charge layers of BaTiO3 (1959) Czechosl J Phys, 9, pp. 468-480; Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A., Review of ferroelectric domain imaging by piezoresponse force microscopy (2007) Scanning probe microscopy. Electrical and electromechanical phenomena at the nanoscale, pp. 173-214. , Springer, Berlin, S. Kalinin, A. Gruverman (Eds.); Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T.E., Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3 (1998) Appl Phys Lett, 73, pp. 3073-3075; Kuznetsov, D.K., Shur, V., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics, 373, pp. 133-138; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J Phys Chem Solids, 47, pp. 453-461; Landau, L.D., Lifshitz, E.M., (1960) Electrodynamics of Continuous Media. Course of Theoretical Physics, , Oxford, Pergamon Press; Lee, Y.-S., Meade, T., Perlin, V., Winful, H., Norris, T.B., Generation of narrowband teraherz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate (2000) Appl Phys Lett, 76, pp. 2505-2507; Lee, Y.-S., Meade, T., Norris, T.B., Galvanauskas, A., Tunable narrow-band terahertz generation from periodically poled lithium niobate (2001) Appl Phys Lett, 78, pp. 3583-3585; Lobov, A.I., Shur, V., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Maker, P.D., Terhune, R.W., Nisenoff, M., Savage, C.M., Effects of dispersion and focusing on the production of the optical harmonics (1962) Phys Rev Lett, 8 (1), pp. 21-23; Matthias, B.T., Remeika, J.P., Ferroelectricity in the ilmenite structure (1949) Phys Rev, 76, pp. 1886-1887; Meyn, J.P., Fejer, M.M., Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate (1997) Opt Lett, 22, pp. 1214-1216; Miller, R.C., Optical harmonic generation in single crystal BaTiO3 (1964) Phys Rev, 134, pp. A1313-A1319; Miller, R.C., Weinreich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Ming, N.B., Hong, J.F., Feng, D., The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals (1982) J Mater Sci, 17 (6), pp. 1663-1670; Mittleman, D., (2003) Sensing with Terahertz Radiation, , Springer, Berlin; Miyazawa, S., Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide (1979) J Appl Phys, 50, pp. 4599-4603; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12 (11), pp. 2102-2116; Nakamura, K., Tourlog, A., Single-domain surface layers formed by heat treatment of proton-exchanged multidomain LiTaO3 crystals (1993) Appl Phys Lett, 63, pp. 2065-2066; Nakamura, K., Hatanaka, T., Ito, H., High output energy quasi-phase-matched optical parametric oscillators using diffusion-bonded periodically poled and single domain LiNbO3 (2001) Jpn J Appl Phys, 40, pp. L337-L339; Nassau, K., Levinstein, H.J., Lociacono, G.M., Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching (1966) J Phys Chem Sol, 27 (6-7), pp. 983-988; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys Stat Sol (a), 32, pp. 69-78; Nikogosjan, D.N., (2005) Nonlinear Optical Crystals: A Complete Survey, , Springer, New York; Nye, J., (1985) Physical Properties of Crystals, , Oxford University Press, London; Ogi, H., Kavasaki, Y., Hirao, M., Ledbetter, H., Acoustic spectroscopy of lithium niobate: elastic and piezoelectric coefficients (2002) J Appl Phys, 92, pp. 2451-2456; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl Phys Lett, 86, p. 012906; Rosenman, G., Skliar, A., Arie, A., Ferroelectric domain engineering for quasiphasematched nonlinear optical devices (1999) Ferroelectrics Review, 1, pp. 263-326; Ross, G.W., Pollnau, M., Smith, P.G.R., Clarkson, W.A., Britton, P.E., Hanna, D.C., Generation of high-power blue light in periodically poled LiNbO3 (1998) Opt Lett, 23, pp. 171-173; Sakai, K., (2005) Terahertz Optoelectronics, , Springer, Berlin; Sasaki, Y., Avetisyan, Y., Kawase, K., Ito, H., Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal (2002) Appl Phys Lett, 81, pp. 3323-3325; Sasaki, Y., Avetisyan, Y., Yokoyama, H., Ito, H., Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate (2005) Optics Lett, 30, pp. 2927-2929; Sasaki, Y., Suzuki, Y., Suizu, K., Ito, H., Yamaguchi, S., Imaeda, M., Surface-emitted terahertz-wave difference-frequency generation in periodically poled lithium niobate ridge-type waveguide (2006) Jpn J Appl Phys, 45, pp. L367-L369; Schweinler, H.C., Ferroelectricity in the ilmenite structure (1952) Phys Rev, 87, pp. 5-11; Shall, M., Helm, H., Keiding, S.R., Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy (1999) Int J Infrared Millim Waves, 20, pp. 595-604; Shur, V., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, pp. 153-192. , Gordon and Breach, New York, C.A. Paz de Araujo, J.F. Scott, G.W. Taylor (Eds.); Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation theory and applications, pp. 178-214. , WILEY-VCH, Weinheim, J.W.P. Schmelzer (Ed.); Shur, V., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J Mat Sc, 41 (1), pp. 199-210; Shur, V., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Advanced Dielectric, Piezoelectric and Ferroelectric Materials - Synthesis, Characterization and Applications, pp. 622-669. , Woodhead, Cambridge, Z.G. Ye (Ed.); Shur, V.Y., Rumyantsev, E.L., Arising and evolution of the domain structure in ferroelectrics (1998) J Korean Phys Soc, 32, pp. S727-S732; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Field dependence of the polarization switching parameters and shape of domains in lead germanate (1984) Sov Phys Solid State, 26, pp. 1521-1522; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Ovechkina, I.V., Triangular domains in lead germanate (1985) Sov Phys Solid State, 27, pp. 959-960; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl Phys Lett, 76 (2), pp. 143-145; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77 (22), pp. 3636-3638; Shur, V., Rumyantsev, E.L., Pelegov, D.V., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Ivanov, R.K., Barkhausen jumps during domain wall motion in ferroelectrics (2002) Ferroelectrics, 267, pp. 347-353; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V., Kuznetsov, D.K., Lobov, A.I., Pelegov, D.V., Pelegova, E.V., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate (2008) Phys Solid State, 50 (4), pp. 717-723; Siegel, P.H., Terahertz technology in biology and medicine (2004) IEEE Trans Microwave Theory Tech, 52, pp. 2438-2446; Smith, R.T., Welsh, F.S., Temperature dependence of the elastic, piezoelectric, and dielectric constant of lithium tantalate and lithium niobate (1971) J Appl Phys, 42, pp. 2219-2230; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl Phys B, 81, pp. 729-752; Suizu, K., Suzuki, Y., Sasaki, Y., Ito, H., Avetisyan, Y., Surface-emitted terahertzwave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves (2006) Opt Lett, 31 (7), pp. 957-959; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Tonouchi, M., (2006) Terahertz Technology, , Tokyo, Ohmsha; Tonouchi, M., Cutting-edge terahertz technology (2007) Nature Photonics, 1, pp. 97-105; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the+z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl Phys Lett, 86, p. 022906; Volk, T.R., Woehlecke, M., (2009) Lithium Niobate Defects Potorefraction and Ferroelectric Switching, , Springer, Berlin; Wan, Z.L., Wang, Q., Xi, Y.X., Lu, Y.Q., Zhu, Y.Y., Ming, N.B., Fabrication of acoustic superlattice LiNbO3 by pulsed current induction and its application for crossed field ultrasonic excitation (2000) Appl Phys Lett, 77, pp. 1891-1893; Watson, M.A., O'Connor, M.V., Lloyd, P.S., Shepherd, D.P., Hanna, D.C., Gawith, C.B.E., Ming, L., Balachninaite, O., Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths (2002) Opt Lett, 27, pp. 2106-2108; Webjörn, J., Pruneri, V., Russell, P., St, J., Barr, J.R.M., Hanna, D.C., Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes (1994) Electron Lett, 30 (11), pp. 894-895; Weis, R.S., Gaylord, T.K., Lithium niobate: summary of physical properties and crystal structure (1985) Appl Phys A, 37 (4), pp. 191-203; White, R., McKinnie, I., Butterworth, S., Baxter, G., Warrington, D., Smith, P., Ross, G., Hanna, D., Tunable single-frequency ultraviolet generation from a continuouswave Ti: sapphire laser with an intracavity PPLN frequency doubler (2003) Appl Phys B: Lasers and Optics, 77, pp. 547-550; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl Phys Lett, 62, pp. 435-436; Zhu, S.N., Zhu, Y.Y., Zhang, Z.Y., Shu, H., Wang, H.F., Hong, J.F., Ge, C.Z., Ming, N.B., LiTaO3 crystal periodically poled by applying an external pulsed field (1995) J Appl Phys, 77 (10), pp. 5481-5483; Zhu, Y.Y., Ming, N.B., Ultrasonic excitation and propagation in an acoustic superlattice (1992) J Appl Phys, 72, pp. 904-914; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Shui, Y.A., Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800MHz (1988) Appl Phys Lett, 53, pp. 1381-1383; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Shui, Y.A., High-frequency resonance in acoustic superlattice of LiNbO3 crystals (1988) Appl Phys Lett, 53, pp. 2278-2280; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Ultrasonic spectrum in Fibonacci acoustic superlattices (1989) Phys Rev B, 40, pp. 8536-8540; Zhu, Y.Y., Zhu, S.N., Hong, J.F., Ming, N.B., Domain inversion in LiNbO3 by proton exchange and quick heat treatment (1994) Appl Phys Lett, 65, pp. 558-560
Correspondence Address Shur, V.Y.; Institute of Physics and Applied Mathematics, Ural State University, 51 Lenin Ave, Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
Publisher Elsevier Inc.
ISBN 9781845695347
Language of Original Document English
Abbreviated Source Title Adv. Piezoelectric Mater.: Sci. and Technol.
Source Scopus