References |
Armstrong, J.A., Bloembergen, N., Ducuing, J., Perhsan, P.S., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127 (6), pp. 1918-1939; Avetisyan, Y., Sasaki, Y., Ito, H., Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide (2001) Appl Phys B, 73, pp. 511-514; Bakker, H.J., Hunsche, S., Kurz, H., Investigation of anharmonic lattice vibrations with coherent phonon polaritons (1994) Phys Rev B, 50, pp. 914-920; Ballman, A.A., Growth of piezoelectric and ferroelectric materials by the Czochralski technique (1965) J Am Ceramic Soc, 48 (2), pp. 112-113; Bass, M., Franken, P.A., Ward, J.F., Weinreich, G., Optical rectification (1962) Phys Rev Lett, 9, pp. 446-448; Batchko, R.G., Shur, V., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl Phys Lett, 75 (12), pp. 1673-1675; Batchko, R., Miller, G., Byer, R., Shur, V., Fejer, M., (2003) Backswitch poling method for domain patterning of ferroelectric materials, , US Patent No. 6,542,285 B1 April 1; Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., Hanna, D.C., Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal (2000) Phys Rev Lett, 84, pp. 4345-4348; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonl Opt Phys Mats, 6, pp. 549-592; Chen, Y.L., Xu, J.J., Chen, X.J., Kong, Y.F., Zhang, G.Y., Domain reversion process in near-stoichiometric LiNbO3 crystals (2001) Opt Commun, 188, pp. 359-364; Cheng, S.D., Zhu, Y.Y., Lu, Y.L., Ming, N.B., Growth and transducer properties of an acoustic superlattice with its periods varying gradually (1995) Appl Phys Lett, 66, pp. 291-292; Ding, Y.J., Kurgin, J.B., A new scheme for generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate (1998) Optic Comm, 148, pp. 105-109; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland, Amsterdam; Fedulov, S.A., Shapiro, I., Ladyzhenski, P.B., Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals (1965) Kristallografiya, 10 (2), pp. 268-269; Feng, D., Ming, N.B., Hong, J.F., Yang, Y.S., Zhu, J.S., Yang, Z., Wang, Y.N., Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains (1980) Appl Phys Lett, 37, pp. 607-609; Ferguson, B., Zhang, X.-C., Materials for terahertz science and technology (2002) Nature Mater, 1, pp. 26-33; Franken, P.A., Ward, J.F., Optical harmonics and nonlinear phenomena (1963) Rev Mod Phys, 35 (1), pp. 23-39; Fridkin, V.M., (1980) Ferroelectrics Semiconductors, , Consultants Bureau, New York; Furukawa, Y., Kitamura, K., Niwa, K., Hatano, H., Bernasconi, P., Montemezzani, G., Gunter, P., Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range (1999) Jpn J Appl Phys, 38, pp. 1816-1819; Giordmaine, J.A., Mixing of light beams in crystals (1962) Phys Rev Lett, 8 (1), pp. 19-20; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V., Characterization of PPLN-microstructures by means of Raman spectroscopy (2008) Appl Phys A Mater Sci Process, 91, pp. 65-67; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) C R Physique, 8, pp. 180-198; IRE standards on piezoelectric crystals: the electromechanical coupling factor (1958) Proc IRE, 46, pp. 764-778. , IRE; Ishizuki, H., Taira, T., High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm×5mm aperture (2005) Opt Lett, 30, pp. 2918-2920; Janovec, V., Anti-parallel ferroelectric domain in surface space-charge layers of BaTiO3 (1959) Czechosl J Phys, 9, pp. 468-480; Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A., Review of ferroelectric domain imaging by piezoresponse force microscopy (2007) Scanning probe microscopy. Electrical and electromechanical phenomena at the nanoscale, pp. 173-214. , Springer, Berlin, S. Kalinin, A. Gruverman (Eds.); Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T.E., Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3 (1998) Appl Phys Lett, 73, pp. 3073-3075; Kuznetsov, D.K., Shur, V., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics, 373, pp. 133-138; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J Phys Chem Solids, 47, pp. 453-461; Landau, L.D., Lifshitz, E.M., (1960) Electrodynamics of Continuous Media. Course of Theoretical Physics, , Oxford, Pergamon Press; Lee, Y.-S., Meade, T., Perlin, V., Winful, H., Norris, T.B., Generation of narrowband teraherz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate (2000) Appl Phys Lett, 76, pp. 2505-2507; Lee, Y.-S., Meade, T., Norris, T.B., Galvanauskas, A., Tunable narrow-band terahertz generation from periodically poled lithium niobate (2001) Appl Phys Lett, 78, pp. 3583-3585; Lobov, A.I., Shur, V., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Maker, P.D., Terhune, R.W., Nisenoff, M., Savage, C.M., Effects of dispersion and focusing on the production of the optical harmonics (1962) Phys Rev Lett, 8 (1), pp. 21-23; Matthias, B.T., Remeika, J.P., Ferroelectricity in the ilmenite structure (1949) Phys Rev, 76, pp. 1886-1887; Meyn, J.P., Fejer, M.M., Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate (1997) Opt Lett, 22, pp. 1214-1216; Miller, R.C., Optical harmonic generation in single crystal BaTiO3 (1964) Phys Rev, 134, pp. A1313-A1319; Miller, R.C., Weinreich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Ming, N.B., Hong, J.F., Feng, D., The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals (1982) J Mater Sci, 17 (6), pp. 1663-1670; Mittleman, D., (2003) Sensing with Terahertz Radiation, , Springer, Berlin; Miyazawa, S., Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide (1979) J Appl Phys, 50, pp. 4599-4603; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12 (11), pp. 2102-2116; Nakamura, K., Tourlog, A., Single-domain surface layers formed by heat treatment of proton-exchanged multidomain LiTaO3 crystals (1993) Appl Phys Lett, 63, pp. 2065-2066; Nakamura, K., Hatanaka, T., Ito, H., High output energy quasi-phase-matched optical parametric oscillators using diffusion-bonded periodically poled and single domain LiNbO3 (2001) Jpn J Appl Phys, 40, pp. L337-L339; Nassau, K., Levinstein, H.J., Lociacono, G.M., Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching (1966) J Phys Chem Sol, 27 (6-7), pp. 983-988; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys Stat Sol (a), 32, pp. 69-78; Nikogosjan, D.N., (2005) Nonlinear Optical Crystals: A Complete Survey, , Springer, New York; Nye, J., (1985) Physical Properties of Crystals, , Oxford University Press, London; Ogi, H., Kavasaki, Y., Hirao, M., Ledbetter, H., Acoustic spectroscopy of lithium niobate: elastic and piezoelectric coefficients (2002) J Appl Phys, 92, pp. 2451-2456; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl Phys Lett, 86, p. 012906; Rosenman, G., Skliar, A., Arie, A., Ferroelectric domain engineering for quasiphasematched nonlinear optical devices (1999) Ferroelectrics Review, 1, pp. 263-326; Ross, G.W., Pollnau, M., Smith, P.G.R., Clarkson, W.A., Britton, P.E., Hanna, D.C., Generation of high-power blue light in periodically poled LiNbO3 (1998) Opt Lett, 23, pp. 171-173; Sakai, K., (2005) Terahertz Optoelectronics, , Springer, Berlin; Sasaki, Y., Avetisyan, Y., Kawase, K., Ito, H., Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal (2002) Appl Phys Lett, 81, pp. 3323-3325; Sasaki, Y., Avetisyan, Y., Yokoyama, H., Ito, H., Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate (2005) Optics Lett, 30, pp. 2927-2929; Sasaki, Y., Suzuki, Y., Suizu, K., Ito, H., Yamaguchi, S., Imaeda, M., Surface-emitted terahertz-wave difference-frequency generation in periodically poled lithium niobate ridge-type waveguide (2006) Jpn J Appl Phys, 45, pp. L367-L369; Schweinler, H.C., Ferroelectricity in the ilmenite structure (1952) Phys Rev, 87, pp. 5-11; Shall, M., Helm, H., Keiding, S.R., Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy (1999) Int J Infrared Millim Waves, 20, pp. 595-604; Shur, V., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, pp. 153-192. , Gordon and Breach, New York, C.A. Paz de Araujo, J.F. Scott, G.W. Taylor (Eds.); Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation theory and applications, pp. 178-214. , WILEY-VCH, Weinheim, J.W.P. Schmelzer (Ed.); Shur, V., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J Mat Sc, 41 (1), pp. 199-210; Shur, V., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Advanced Dielectric, Piezoelectric and Ferroelectric Materials - Synthesis, Characterization and Applications, pp. 622-669. , Woodhead, Cambridge, Z.G. Ye (Ed.); Shur, V.Y., Rumyantsev, E.L., Arising and evolution of the domain structure in ferroelectrics (1998) J Korean Phys Soc, 32, pp. S727-S732; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Field dependence of the polarization switching parameters and shape of domains in lead germanate (1984) Sov Phys Solid State, 26, pp. 1521-1522; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Ovechkina, I.V., Triangular domains in lead germanate (1985) Sov Phys Solid State, 27, pp. 959-960; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl Phys Lett, 76 (2), pp. 143-145; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77 (22), pp. 3636-3638; Shur, V., Rumyantsev, E.L., Pelegov, D.V., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Ivanov, R.K., Barkhausen jumps during domain wall motion in ferroelectrics (2002) Ferroelectrics, 267, pp. 347-353; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V., Kuznetsov, D.K., Lobov, A.I., Pelegov, D.V., Pelegova, E.V., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate (2008) Phys Solid State, 50 (4), pp. 717-723; Siegel, P.H., Terahertz technology in biology and medicine (2004) IEEE Trans Microwave Theory Tech, 52, pp. 2438-2446; Smith, R.T., Welsh, F.S., Temperature dependence of the elastic, piezoelectric, and dielectric constant of lithium tantalate and lithium niobate (1971) J Appl Phys, 42, pp. 2219-2230; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl Phys B, 81, pp. 729-752; Suizu, K., Suzuki, Y., Sasaki, Y., Ito, H., Avetisyan, Y., Surface-emitted terahertzwave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves (2006) Opt Lett, 31 (7), pp. 957-959; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Tonouchi, M., (2006) Terahertz Technology, , Tokyo, Ohmsha; Tonouchi, M., Cutting-edge terahertz technology (2007) Nature Photonics, 1, pp. 97-105; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the+z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl Phys Lett, 86, p. 022906; Volk, T.R., Woehlecke, M., (2009) Lithium Niobate Defects Potorefraction and Ferroelectric Switching, , Springer, Berlin; Wan, Z.L., Wang, Q., Xi, Y.X., Lu, Y.Q., Zhu, Y.Y., Ming, N.B., Fabrication of acoustic superlattice LiNbO3 by pulsed current induction and its application for crossed field ultrasonic excitation (2000) Appl Phys Lett, 77, pp. 1891-1893; Watson, M.A., O'Connor, M.V., Lloyd, P.S., Shepherd, D.P., Hanna, D.C., Gawith, C.B.E., Ming, L., Balachninaite, O., Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths (2002) Opt Lett, 27, pp. 2106-2108; Webjörn, J., Pruneri, V., Russell, P., St, J., Barr, J.R.M., Hanna, D.C., Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes (1994) Electron Lett, 30 (11), pp. 894-895; Weis, R.S., Gaylord, T.K., Lithium niobate: summary of physical properties and crystal structure (1985) Appl Phys A, 37 (4), pp. 191-203; White, R., McKinnie, I., Butterworth, S., Baxter, G., Warrington, D., Smith, P., Ross, G., Hanna, D., Tunable single-frequency ultraviolet generation from a continuouswave Ti: sapphire laser with an intracavity PPLN frequency doubler (2003) Appl Phys B: Lasers and Optics, 77, pp. 547-550; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl Phys Lett, 62, pp. 435-436; Zhu, S.N., Zhu, Y.Y., Zhang, Z.Y., Shu, H., Wang, H.F., Hong, J.F., Ge, C.Z., Ming, N.B., LiTaO3 crystal periodically poled by applying an external pulsed field (1995) J Appl Phys, 77 (10), pp. 5481-5483; Zhu, Y.Y., Ming, N.B., Ultrasonic excitation and propagation in an acoustic superlattice (1992) J Appl Phys, 72, pp. 904-914; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Shui, Y.A., Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800MHz (1988) Appl Phys Lett, 53, pp. 1381-1383; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Shui, Y.A., High-frequency resonance in acoustic superlattice of LiNbO3 crystals (1988) Appl Phys Lett, 53, pp. 2278-2280; Zhu, Y.Y., Ming, N.B., Jiang, W.H., Ultrasonic spectrum in Fibonacci acoustic superlattices (1989) Phys Rev B, 40, pp. 8536-8540; Zhu, Y.Y., Zhu, S.N., Hong, J.F., Ming, N.B., Domain inversion in LiNbO3 by proton exchange and quick heat treatment (1994) Appl Phys Lett, 65, pp. 558-560 |