References |
Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitching poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett., 75, pp. 1673-1675; Shur, V.Ya., Domain nanotechnology in ferroelectrics: Nano-domain engineering in lithium niobate crystals (2008) Ferroelectrics, 373, pp. 1-10; Shur, V.Ya., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. of Mater. Sc., 41 (1), pp. 199-210; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, pp. 157-167; Shur, V.Ya., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , J. W. P. Schmelzer (Ed.), Weinheim: WILEYVCH; Shur, V.Ya., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Zuo-Guang Ye (Ed.), Woodhead Publishing Ltd; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett., 77 (22), pp. 3636-3638; Shur, V.Ya., Fast polarization reversal process: Evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, 10, pp. 153-192. , C. A. Paz de Araujo, J. F. Scott, and G. W. Taylor (Ed.), Gordon & Breach Science Publ; Dierolf, V., Sandmann, C., Inspection of periodically poled waveguide devices by confocal luminescence microscopy (2004) Appl. Phys. B, 78, pp. 363-366; Kong, Y., Xu, J., Li, B., Chen, S., Huang, Z., Zhang, L., Liu, S., Zhang, G., The asymmetry between the domain walls of periodically poled lithium niobate crystals (2004) Opt. Mater., 27, pp. 471-473; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V.Ya., Raman micro-spectroscopy as a probe to investigate PPLN structures (2007) Ferroelectrics, 352, pp. 106-110; Hammoum, R., Fontana, M.D., Bourson, P., Shur, V.Ya., Characterization of PPLN-microstructures by means of raman spectroscopy (2008) Appl. Phys. A, 91, pp. 65-67; Fontana, M.D., Hammoum, R., Bourson, P., Margueron, S., Shur, V.Ya., Raman probe on PPLN microstructures (2008) Ferroelectrics, 373, pp. 26-31; Ridah, A., Bourson, P., Fontana, M.D., Malovichko, G., The composition dependence of the raman spectrum and new assignment of the phonons in LiNbO3 (1997) J. Phys. Condens. Matter, 9, pp. 9687-9693; Mouras, R., Fontana, M.D., Bourson, P., Postnikov, A.V., Lattice site of Mg Ion in LiNbO3 crystal determined by raman spectroscopy (2000) J. Phys. Condens. Matter, 12, pp. 5053-5059; Postnikov, A.V., Caciuc, V., Borstel, G., Structure optimization and frozen phonons in LiNbO3 (2000) J. Phys. Chem. Solids, 61, pp. 295-299; Lines, M.E., Glass, A.M., (1977) Principles and Application of Ferroelectrics and Related Materials, , Oxford: Clarendon Press; Scott, J.G., Mailis, S., Sones, C.L., Eason, R.W., A Raman study of single-crystal congruent lithium niobate following electric-field repoling (2004) Appl. Phys. A, 79, pp. 691-696; Shur, V.Ya., Kuznetsov, D.K., Lobov, A.I., Pelegov, D.V., Pelegova, E.V., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate (2008) Phys. Solid State, 50 (4), pp. 717-723; Kuznetsov, D.K., Shur, V.Ya., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics, 373, pp. 133-138 |