Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach / Morozovska A.N., Eliseev E.A., Li Y., Svechnikov S.V., Maksymovych P., Shur V.Y., Gopalan V., Chen L.-Q., Kalinin S.V. // Physical Review B - Condensed Matter and Materials Physics. - 2009. - V. 80, l. 21.

ISSN:
10980121
Type:
Article
Abstract:
Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the analytical Landau-Ginzburg-Devonshire approach and phase-field modeling. The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain-wall width, and film thickness. The polarization distribution inside a "subcritical" nucleus of the domain preceding the nucleation event is shown to be "soft" (i.e., smooth without domain walls) and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside a stable domain is "hard" (i.e., sharp contrast with delineated domain walls) and the spontaneous polarization reorientation takes place inside a localized spatial region, where the absolute value of the resulting electric field is larger than the thermodynamic coercive field. The calculated coercive biases corresponding to formation of switched domains are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain-tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving-counter domain wall. For infinitely thin domain wall the depolarization field outside the semiellipsoidal domain tip is always higher than the intrinsic coercive field that must initiate the local domain breakdown through the sample depth while the domain length is finite in the energetic approach evolved by Landauer and Molotskii (we refer the phenomenon as Landauer-Molotskii paradox). Our approach provides the solution of the paradox: the domain vertical growth should be accompanied by the increase in the charged domain-wall width. © 2009 The American Physical Society.
Author keywords:
Index keywords:
нет данных
DOI:
10.1103/PhysRevB.80.214110
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952478903&doi=10.1103%2fPhysRevB.80.214110&partnerID=40&md5=602b70400d61055636fdbf9006204d42
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 214110
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952478903&doi=10.1103%2fPhysRevB.80.214110&partnerID=40&md5=602b70400d61055636fdbf9006204d42
Affiliations Institute of Semiconductor Physics, 41 pr. Nauki, 03028 Kiev, Ukraine; Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3 Krjijanovskogo, 03142 Kiev, Ukraine; Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, United States; Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Institute of Physics and Applied Mathematics, Ural State University, Ekaterinburg 620083, Russian Federation; Pacific Northwest National Laboratory, MSIN K7-90, 902 Battelle Boulevard, Richland, WA 99352, United States
References Waser, R., Rüdiger, A., (2004) Nature Mater., 3, p. 81. , 10.1038/nmat1067; (2005) Nanoelectronics and Information Technology, , edited by R. Waser (Wiley-VCH, Berlin; Scott, J.F., (2000) Ferroelectric Memories, , Springer, New York; Neese, B., Chu, B., Lu, S.G., Wang, Y., Furman, E., Zhang, Q.M., (2008) Science, 321, p. 821. , 10.1126/science.1159655; Bokov, A.A., Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite structure (2006) Journal of Materials Science, 41 (1), pp. 31-52. , DOI 10.1007/s10853-005-5915-7; Jaffe, B., Cook, W.R., Jaffe, H., (1971) Piezoelectric Ceramics, , Academic, London, New York; Kholkin, A.L., Wuthrich, Ch., Taylor, D.V., Setter, N., (1996) Rev. Sci. Instrum., 67, p. 1935. , 10.1063/1.1147000; Maeder, T., Muralt, P., Sagalowicz, L., Reaney, I., Kohli, M., Kholkin, A., Setter, N., Pb(Zr,Ti)O3 thin films on zirconium membranes for micromechanical applications (1996) Applied Physics Letters, 68 (6), pp. 776-778. , DOI 10.1063/1.116529, PII S000369519602606X; Kholkin, A.L., Colla, E.L., Tagantsev, A.K., Taylor, D.V., Setter, N., Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films (1996) Applied Physics Letters, 68 (18), pp. 2577-2579. , DOI 10.1063/1.116189, PII S0003695196021183; Kholkin, A.L., Brooks, K.G., Setter, N., (1997) Appl. Phys. Lett., 71, p. 2044. , 10.1063/1.119782; Ishibashi, Y., Takagi, Y., (1971) J. Phys. Soc. Jpn., 31, p. 506. , 10.1143/JPSJ.31.506; Avrami, M., (1939) J. Chem. Phys., 7, p. 1103. , 10.1063/1.1750380; Kolmogorov, A.N., (1937) Izv. Akad. Nauk SSSR, Ser. Mat., 1, p. 355; Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R., (2004) IEEE Trans. Electron Devices, 51, p. 452. , 10.1109/TED.2003.823243; Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Quantized conductance atomic switch (2005) Nature, 433 (7021), pp. 47-50. , DOI 10.1038/nature03190; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Maksymovych, P., Seal, K., Nikiforov, M., Baddorf, A.P., Proksch, R., (2008) Mater. Today, 11 (11), p. 16. , 10.1016/S1369-7021(08)70235-9; Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., Molotski, M., (2003) Appl. Phys. Lett., 82, p. 103. , 10.1063/1.1534410; Paruch, P., Giamarchi, T., Tybell, T., Triscone, J.-M., Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films (2006) Journal of Applied Physics, 100 (5), p. 051608. , DOI 10.1063/1.2337356; Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J.-M., Local, nonvolatile electronic writing of epitaxial Pb(Zr 0.52Ti0.48)O3/SrRuO=3 heterostructures (1997) Science, 276 (5315), pp. 1100-1103. , DOI 10.1126/science.276.5315.1100; Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K., Hiranaga, Y., Realization of 10 Tbit in.2 memory density and subnanosecond domain switching time in ferroelectric data storage (2005) Applied Physics Letters, 87 (23), pp. 1-3. , DOI 10.1063/1.2140894, 232907; Terabe, K., Nakamura, M., Takekawa, S., Kitamura, K., Higuchi, S., Gotoh, Y., Cho, Y., (2003) Appl. Phys. Lett., 82, p. 433. , 10.1063/1.1538351; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Applied Physics Letters, 86 (1), pp. 0129061-0129063. , DOI 10.1063/1.1845594, 012906; Kan, Y., Lu, X., Wu, X., Zhu, J., Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope (2006) Applied Physics Letters, 89 (26), p. 262907. , DOI 10.1063/1.2425034; Liu, X., Terabe, K., Kitamura, K., Stability of engineered domains in ferroelectric LiNbO3 and LiTaO3 crystals (2007) Physica Scripta T, T129, pp. 103-107. , DOI 10.1088/0031-8949/2007/T129/023, PII S00318949075934023, 2nd International Symposium on Functional Materials; Kan, Y., Lu, X., Bo, H., Huang, F., Wu, X., Zhu, J., Critical radii of ferroelectric domains for different decay processes in LiNb O3 crystals (2007) Applied Physics Letters, 91 (13), p. 132902. , DOI 10.1063/1.2790475; Roelofs, A., Schneller, T., Szot, K., Waser, R., (2002) Appl. Phys. Lett., 81, p. 5231. , 10.1063/1.1534412; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N., Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy (2007) Annual Review of Materials Research, 37, pp. 189-238. , DOI 10.1146/annurev.matsci.37.052506.084323; Bdikin, I.K., Kholkin, A.L., Morozovska, A.N., Svechnikov, S.V., Kim, S.-H., Kalinin, S.V., Domain dynamics in piezoresponse force spectroscopy: Quantitative deconvolution and hysteresis loop fine structure (2008) Applied Physics Letters, 92 (18), p. 182909. , DOI 10.1063/1.2919792; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Chu, Y.H., Zhao, T., Ramesh, R., Choudhury, S., Morozovska, A.N., (2007) Proc. Natl. Acad. Sci. U.S.A., 104, p. 20204. , 10.1073/pnas.0709316104; Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Kalinin, S.V., Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials (2008) Nature Materials, 7 (3), pp. 209-215. , DOI 10.1038/nmat2114, PII NMAT2114; Kalinin, S.V., Jesse, S., Rodriguez, B.J., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Probing the role of single defects on the thermodynamics of electric-field induced phase transitions (2008) Physical Review Letters, 100 (15), p. 155703. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.155703&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.155703; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., (2003) Phys. Rev. Lett., 90, p. 107601. , 10.1103/PhysRevLett.90.107601; Kalinin, S.V., Gruverman, A., Rodriguez, B.J., Shin, J., Baddorf, A.P., Karapetian, E., Kachanov, M., Nanoelectromechanics of polarization switching in piezoresponse force microscopy (2005) Journal of Applied Physics, 97 (7), pp. 1-6. , DOI 10.1063/1.1866483, 074305; Emelyanov, A.Yu., Coherent ferroelectric switching by atomic force microscopy (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (13), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:71, DOI 10.1103/PhysRevB.71.132102, 132102; Molotskii, M.I., Shvebelman, M.M., Dynamics of ferroelectric domain formation in an atomic force microscope (2005) Philosophical Magazine, 85 (15), pp. 1637-1655. , DOI 10.1080/14786430312331524670; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Jesse, S., Rodriguez, B.J., Kalinin, S.V., Piezoresponse force spectroscopy of ferroelectric-semiconductor materials (2007) Journal of Applied Physics, 102 (11), p. 114108. , DOI 10.1063/1.2818370; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Rodriguez, B.J., Jesse, S., Kalinin, S.V., (2008) Phys. Rev. B, 78, p. 054101. , 10.1103/PhysRevB.78.054101; Landauer, R., (1957) J. Appl. Phys., 28, p. 227. , 10.1063/1.1722712; Miller, R.C., Weinreich, G., (1960) Phys. Rev., 117, p. 1460. , 10.1103/PhysRev.117.1460; Sidorkin, A.S., (1993) Ferroelectrics, 150, p. 313; Huber, J.E., (2006) J. Mater. Res., 21, p. 557. , 10.1557/jmr.2006.0082; Molotskii, M., (2003) J. Appl. Phys., 93, p. 6234. , 10.1063/1.1567033; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy (2006) Applied Physics Letters, 89 (19), p. 192901. , DOI 10.1063/1.2378526; Maksymovych, P., Jesse, S., Huijben, M., Ramesh, R., Morozovska, A.N., Choudhury, S., Chen, L.-Q., Kalinin, S.V., (2009) Phys. Rev. Lett., 102, p. 017601. , 10.1103/PhysRevLett.102.017601; Lines, M.E., Glass, A.M., (1977) Principles and Applications of Ferroelectric and Related Materials, , Clarendon, Oxford; Woo, C.H., Zheng, Y., (2008) Appl. Phys. A: Mater. Sci. Process., 91, p. 59. , 10.1007/s00339-007-4355-4; Rodriguez, B.J., Choudhury, S., Chu, Y.H., Bhattacharyya, A., Jesse, S., Seal, K., Baddorf, A.P., Kalinin, S.V., (2009) Adv. Funct. Mater., 19, p. 2053. , 10.1002/adfm.200900100; Morozovska, A.N., Kalinin, S.V., Eliseev, E.A., Gopalan, V., Svechnikov, S.V., (2008) Phys. Rev. B, 78, p. 125407. , 10.1103/PhysRevB.78.125407; Tagantsev, A.K., Gerra, G., Interface-induced phenomena in polarization response of ferroelectric thin films (2006) Journal of Applied Physics, 100 (5), p. 051607. , DOI 10.1063/1.2337009; Kretschmer, R., Binder, K., (1979) Phys. Rev. B, 20, p. 1065. , 10.1103/PhysRevB.20.1065; Kalinin, S.V., Bonnell, D.A., (2001) Phys. Rev. B, 63, p. 125411. , 10.1103/PhysRevB.63.125411; Kalinin, S.V., Johnson, C.Y., Bonnell, D.A., Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface (2002) Journal of Applied Physics, 91 (6), p. 3816. , DOI 10.1063/1.1446230; Shin, Y.-H., Grinberg, I., Chen, I.-W., Rappe, A.M., Nucleation and growth mechanism of ferroelectric domain-wall motion (2007) Nature, 449 (7164), pp. 881-884. , DOI 10.1038/nature06165, PII NATURE06165; Wang, R.V., Fong, D.D., Jiang, F., Highland, M.J., Fuoss, P.H., Thompson, C., Kolpak, A.M., Stephenson, G.B., (2009) Phys. Rev. Lett., 102, p. 047601. , 10.1103/PhysRevLett.102.047601; Gruverman, A., Cross, J.S., Oates, W.S., (2008) Appl. Phys. Lett., 93, p. 242902. , 10.1063/1.3046734; Gomez-Monivas, S., Froufe-Perez, L.S., Caamano, A.J., Saenz, J.J., Electrostatic forces between sharp tips and metallic and dielectric samples (2001) Applied Physics Letters, 79 (24), p. 4048. , DOI 10.1063/1.1424478; Abplanalp, M., (2001), Ph.D. thesis, Swiss Federal Institute of Technology; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function (2007) Journal of Applied Physics, 102 (7), p. 074105. , DOI 10.1063/1.2785824; Zhirnov, V.A., (1958) Zh. Eksp. Teor. Fiz., 35, p. 1175; Zhirnov, V.A., (1959) Sov. Phys. JETP, 8, p. 822; Cao, W., Cross, L.E., (1991) Phys. Rev. B, 44, p. 5. , 10.1103/PhysRevB.44.5; Korn, G.A., Korn, T.M., (1961) Mathematical Handbook for Scientists and Engineers, , McGraw-Hill, New York; Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q., (2001) Appl. Phys. Lett., 78, p. 3878. , 10.1063/1.1377855; Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q., Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films (2002) Acta Materialia, 50 (2), pp. 395-411. , DOI 10.1016/S1359-6454(01)00360-3, PII S1359645401003603; Kalinin, S.V., Morozovska, A.N., Qing Chen, L., Rodriguez, B.J., Rep. Prog. Phys.; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (18), p. 184110. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:71, DOI 10.1103/PhysRevB.71.184110; Lee, D., Behera, R.K., Wu, P., Xu, H., Li, Y.L., Sinnott, S.B., Phillpot, S.R., Gopalan, V., (2009) Phys. Rev. B, 80, p. 060102. , 10.1103/PhysRevB.80.060102; Jia, C.L., Mi, S.-B., Urban, K., Vrejoiu, I., Alexe, M., Hesse, D., (2008) Nature Mater., 7, p. 57. , 10.1038/nmat2080; Choudhury, S., Li, Y., Odagawa, N., Vasudevarao, A., Tian, L., Capek, P., Dierolf, V., Gopalan, V., (2008) J. Appl. Phys., 104, p. 084107. , 10.1063/1.3000459; A. N. Morozovska, E. A. Eliseev, S. V. Svechnikov, P. Maksymovych, and S. V. Kalinin, arXiv:0811.1768 (unpublished); Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P., (1984) Electrodynamics of Continuous Media, , 2nd ed. (Butterworth-Heinemann, Oxford; Drougard, M.E., Landauer, R., (1959) J. Appl. Phys., 30, p. 1663. , 10.1063/1.1735032; Ducharme, S., Fridkin, V.M., Bune, A.V., Palto, S.P., Blinov, L.M., Petukhova, N.N., Yudin, S.G., (2000) Phys. Rev. Lett., 84, p. 175. , 10.1103/PhysRevLett.84.175; Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H., (1995) Phys. Rev. Lett., 74, p. 4309. , 10.1103/PhysRevLett.74.4309; Kay, H.F., Dunn, J.W., (1962) Philos. Mag., 7, p. 2027. , 10.1080/14786436208214471; Haun, M.J., Furman, E., Jang, S.J., Cross, L.E., (1989) Ferroelectrics, 99, p. 63; Paruch, P., Tybell, T., Triscone, J.-M., (2001) Appl. Phys. Lett., 79, p. 530. , 10.1063/1.1388024; Durkan, C., Welland, M.E., Chu, D.P., Migliorato, P., (2000) Appl. Phys. Lett., 76, p. 366. , 10.1063/1.125756; Fujimoto, K., Cho, Y., (2003) Appl. Phys. Lett., 83, p. 5265. , 10.1063/1.1635961; Daimon, Y., Cho, Y., Cross-sectional observation of nanodomain dots formed in both congruent and stoichiometric LiTa O3 crystals (2007) Applied Physics Letters, 90 (19), p. 192906. , DOI 10.1063/1.2737906; Agronin, A., Rosenwaks, Y., Rosenman, G., (2004) Appl. Phys. Lett., 85, p. 452. , 10.1063/1.1772858; Tian, L., Vasudevarao, A., Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., Gopalan, V., (2008) J. Appl. Phys., 104, p. 074110. , 10.1063/1.2979973; Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.-M., (2002) Phys. Rev. Lett., 89, p. 097601. , 10.1103/PhysRevLett.89.097601; Gruverman, A., Wu, D., Scott, J.F., Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale (2008) Physical Review Letters, 100 (9), p. 097601. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.097601&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.097601; Shur, V., (1998) Phase Transitions, 65, p. 49. , 10.1080/01411599808209280
Correspondence Address Morozovska, A. N.; Institute of Semiconductor Physics, 41 pr. Nauki, 03028 Kiev, Ukraine; email: morozo@i.com.ua
CODEN PRBMD
Language of Original Document English
Abbreviated Source Title Phys. Rev. B Condens. Matter Mater. Phys.
Source Scopus