Nanoscale domain effects in ferroelectrics. Formation and evolution of self-assembled structures in LiNbO3 and LiTaO3 / Shur V.Ya., Rumyantsev E.L., Shur A.G., Lobov A.I., Kuznetsov D.K., Shishkin E.I., Nikolaeva E.V., Dolbilov M.A., Zelenovskiy P.S., Gallo K., De Micheli M.P. // Ferroelectrics. - 2007. - V. 354, l. 1. - P. 145-157.

ISSN:
00150193
Type:
Conference Paper
Abstract:
We discuss the most interesting nanoscale domain effects resulting in formation and evolution of self-assembled domain structures in various representatives of LiNbO3 and LiTaO3 family. Several exotic domain kinetic scenarios for complete suppression of the classical wall motion have been revealed. It has been shown that the modification of the surface layer allows to obtain: (1) the wall motion controlled by merging with nanoscale domains generated in front of the moving wall and (2) the discrete switching by enlargement of the web-like self-assembled ensemble of isolated domains. The formation of nanoscale quasi-periodic and self-similar structures during cooling after pulse heating without any application of external electric field was studied. It has been shown that all experimental results can be explained, if the retardation of the bulk screening of the depolarization field is taken into account.
Author keywords:
Domain engineering; Domain kinetics; Domain wall; Ferroelectric; Lithium niobate; Lithium tantalate; Nano-scale domains; Self-assembling
Index keywords:
Domain engineering; Lithium niobate; Lithium tantalate; Nano scale; Self-assembling; Electric fields; Ferroelectric materials; Ferroelectricity; Lithium; Niobium compounds; Nanostructured materials
DOI:
10.1080/00150190701454818
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-58049112966&doi=10.1080%2f00150190701454818&partnerID=40&md5=e6a67b26572350f6927ec201a1216efd
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-58049112966&doi=10.1080%2f00150190701454818&partnerID=40&md5=e6a67b26572350f6927ec201a1216efd
Affiliations Ferroelectric Laboratory, Ural State University, 620083 Ekaterinburg, Russian Federation; Optoelectronics Research Center, University of Southampton, SO17 1BJ, United Kingdom; Laboratoire de Physique de la Matière Condensée, UMR 6622, CNRSUniversité de Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
Author Keywords Domain engineering; Domain kinetics; Domain wall; Ferroelectric; Lithium niobate; Lithium tantalate; Nano-scale domains; Self-assembling
References Lines, M.E., Glass, A.M., (1977) Principles and Application of Ferroelectrics and Related Materials, , Clarendon Press, Oxford; Miller, R.C., Weinreich, G., (1960) Phys. Rev, 117, p. 1460; Hayashi, M., (1972) J. Phys. Soc. Jap, 33, p. 616; Shur, V.Y., (2005) Nucleation Theory and Applications, p. 178. , Ed. by J.W.P. Schmelzer, WILEY-VCH, Weinheim; Shur, V.Y., (2006) J. Mater. Sci, 41, p. 199; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., (2003) Integrated Ferroelectrics, 59, p. 1493; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Mnushkina, I., (2002) Ferroelectrics, 269, p. 189; Gopalan, V., Jia, Q., Mitchell, T., (1999) Appl. Phys. Lett, 75, p. 2482; Shur, V.Y., Rumyantsev, E.L., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., (1999) Phys. Solid State, 41, p. 1681; Shur, V.Y., Nikolaeva, E.V., Rumyantsev, E.L., Shishkin, E.I., Subbotin, A.L., Kozhevnikov, V.L., (1999) Ferroelectrics, 222, p. 323; Shur, V.Y., Rumyantsev, E.L., Kuminov, V.P., Subbotin, A.L., Kozhevnikov, V.L., (1999) Phys. Solid State, 41, p. 269; Gopalan, V., Mitchell, T., (1999) J. Appl. Phys, 85, p. 2304; Gopalan, V., Mitchell, T., (1998) J. Appl. Phys, 83, p. 941; Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., (2001) Appl. Phys. Letters, 79, p. 3146; Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T., (1998) Appl. Phys. Lett, 73, p. 3073; Chernykh, A.P., Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I., Shur, A.G., Terabe, K., Kurimura, S., Gallo, K., (2005) Material Science & Engineering B, 120, p. 109; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., (2000) Appl. Phys. Lett, 76, p. 143; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., (2001) Ferroelectrics, 253, p. 105; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., (2005) Appl. Phys. Lett, 86, p. 022906; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., (2006) Ferroelectrics, 341, p. 85; Nakamura, K., Tourlog, A., (1993) Appl. Phys. Lett, 63, p. 2065; Miyazawa, S., (1979) J. Appl. Phys, 50, p. 4599; Zhu, Y.Y., (1994) Appl. Phys. Lett, 65, p. 558
Correspondence Address Shur, V. Ya.; Ferroelectric Laboratory, Ural State University, 620083 Ekaterinburg, Russian Federation; email: vladimir.shur@usu.ru
Editors Fridkin V.Ducharme S.Kleemann W.Ishibashi Y.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus