References |
Smolenskii, G.A., Agranovskaya, A.I., Dielectric polarization of complicated composites (1960) Sov. Phys.-solid State, 1, pp. 1429-1432; Cross, L.E., Relaxor ferroelectrics: An overview (1994) Ferroelectrics, 151, pp. 305-320; Shur, V.Ya., Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects (1998) Phase Transitions, 65, pp. 49-72; Blinc, R., Pire, R., Zalar, B., Gregorovic, A., Bobnar, V., Relaxor ferroelectrics: Coupled pseudospin-phonon model and the pressure temperature phase diagram (2004) Ferrolectrics, 299, pp. 1-9; Dai, X., Xu, Z., Viehland, D., The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate (1994) Phil. Mag. B, 70, pp. 33-48; Egami, T., Teslic, S., Dmowski, W., Viehland, D., Vakhrushev, S., Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and X-ray scattering (1997) Ferroelectrics, 199, pp. 103-113; Lehnen, P., Kleemann, W., Wöike, Th., Pankrath, R., Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-xBa0.39Nb2O6:Ce x 3+ (2001) Phys. Rev. B, 64, pp. 224109-1-224109-5; Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., Gruverman, A., Imaging and engineering the nanoscale-domain structure of a Sr 0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl. Phys. Lett., 81, pp. 2044-2046; Shur, V.Ya., Lomakin, G.G., Kuminov, V.P., Pelegov, D.V., Beloglazov, S.S., Slovikovski, S.V., Sorkin, I.L., Fractal-cluster kinetics in phase transformations in relaxor ceramic PLZT (1999) Phys. Solid State, 41, pp. 453-456; Shur, V.Ya., Lomakin, G.G., Rumyantsev, E.L., Beloglazov, S.S., Pelegov, D.V., Sternberg, A., Krumins, A., Fractal clusters in relaxor PLZT ceramics: Evolution in electric field (2004) Ferroelectrics, 299, pp. 75-81; El Marssi, M., Farhi, R., Dellis, J.-L., Glinchuk, M.D., Seguin, L., Viehland, D., Ferroelectric and glassy States in La-modified lead zirconate titanate ceramics: A general picture (1998) J. Appl. Phys., 83, pp. 5371-5380; Tan, Q., Viehland, D., Ac-field-dependent structure-property relationship in La-modified lead zirconate titanate: Induced relaxor behavior and breakdown in soft ferroelectrics (1996) Phys. Rev. B, 53, pp. 14103-14111; Shur, V.Ya., Rumyantsev, E.L., Kinetics of ferroelectric domain structure: Retardation effects (1997) Ferroelectrics, 191, pp. 319-333; Shur, V.Ya., Popov, Yu.A., Korovina, N.V., Bound internal field in lead germinate (1984) Sov. Phys. Solid State, 26, pp. 471-474; Cross, L.E., Cline, T.W., Contributions to the dielectric response from charged domain walls in ferroelectric Pb5Ge3O11 (1976) Ferroelectrics, 11, pp. 333-336; Shur, V.Ya., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., Domain structure of lead germinate (1989) Ferroelectrics, 98, pp. 29-49; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys. Lett., 77, pp. 3636-3638; Lambeck, P.V., Jonker, G.H., Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects (1978) Ferroelectrics, 22, pp. 729-731; Kolmogorov, A.N., The statistical theory of metal crystallization (1937) Izv Acad Nauk USSR; Ser Math., 3, pp. 355-359; Avrami, M., Kinetics of phase change. 1. General theory (1939) J. Chem. Phys., 7, pp. 1103-1112; Shur, V.Ya., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys., 84, pp. 445-451 |