Field induced evolution of nanoscale structures in relaxor PLZT ceramics / Shur V.Ya., Rumyantsev E.L., Lomakin G.G., Yakutova O.V., Pelegov D.V., Sternberg A., Kosec M. // Ferroelectrics. - 2005. - V. 316, l. . - P. 23-29.

ISSN:
00150193
Type:
Article
Abstract:
The kinetics of the nanoscale structures under application of bipolar and unipolar ac field was investigated by recording of the switching charge in wide temperature and field range in hot-pressed relaxor PLZT ceramics. Original analysis of the switching charge data was based on the consideration of the field induced transformation as an evolution of the nanoscale domain structure with nanoscale nonpolar inclusions. We have shown that the inhomogeneoits depolarization field produced by the bound charges existing at the interphase boundaries play the key role in spontaneous backswitching effects.
Author keywords:
Heterophase structure; Hysteresis loop; Nanodomains; Polarization reversal; Switching current
Index keywords:
Hot pressing; Hysteresis; Nanostructured materials; Polarization; Structural ceramics; Heterophase structure; Nanodomains; Nonpolar inclusions; Polarization reversal; Switching current; Ferroelectric
DOI:
10.1080/00150190590963093
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751282226&doi=10.1080%2f00150190590963093&partnerID=40&md5=6c6c7df1197a603844ff7b11aceb29ed
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751282226&doi=10.1080%2f00150190590963093&partnerID=40&md5=6c6c7df1197a603844ff7b11aceb29ed
Affiliations Ferroelectric Laboratory, Ural State University, 620083 Ekaterinburg, Russian Federation; Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; Jozef Stefan Institute, 1000 Ljubljana, Slovenia
Author Keywords Heterophase structure; Hysteresis loop; Nanodomains; Polarization reversal; Switching current
References Smolenskii, G.A., Agranovskaya, A.I., Dielectric polarization of complicated composites (1960) Sov. Phys.-solid State, 1, pp. 1429-1432; Cross, L.E., Relaxor ferroelectrics: An overview (1994) Ferroelectrics, 151, pp. 305-320; Shur, V.Ya., Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects (1998) Phase Transitions, 65, pp. 49-72; Blinc, R., Pire, R., Zalar, B., Gregorovic, A., Bobnar, V., Relaxor ferroelectrics: Coupled pseudospin-phonon model and the pressure temperature phase diagram (2004) Ferrolectrics, 299, pp. 1-9; Dai, X., Xu, Z., Viehland, D., The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate (1994) Phil. Mag. B, 70, pp. 33-48; Egami, T., Teslic, S., Dmowski, W., Viehland, D., Vakhrushev, S., Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and X-ray scattering (1997) Ferroelectrics, 199, pp. 103-113; Lehnen, P., Kleemann, W., Wöike, Th., Pankrath, R., Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-xBa0.39Nb2O6:Ce x 3+ (2001) Phys. Rev. B, 64, pp. 224109-1-224109-5; Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., Gruverman, A., Imaging and engineering the nanoscale-domain structure of a Sr 0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl. Phys. Lett., 81, pp. 2044-2046; Shur, V.Ya., Lomakin, G.G., Kuminov, V.P., Pelegov, D.V., Beloglazov, S.S., Slovikovski, S.V., Sorkin, I.L., Fractal-cluster kinetics in phase transformations in relaxor ceramic PLZT (1999) Phys. Solid State, 41, pp. 453-456; Shur, V.Ya., Lomakin, G.G., Rumyantsev, E.L., Beloglazov, S.S., Pelegov, D.V., Sternberg, A., Krumins, A., Fractal clusters in relaxor PLZT ceramics: Evolution in electric field (2004) Ferroelectrics, 299, pp. 75-81; El Marssi, M., Farhi, R., Dellis, J.-L., Glinchuk, M.D., Seguin, L., Viehland, D., Ferroelectric and glassy States in La-modified lead zirconate titanate ceramics: A general picture (1998) J. Appl. Phys., 83, pp. 5371-5380; Tan, Q., Viehland, D., Ac-field-dependent structure-property relationship in La-modified lead zirconate titanate: Induced relaxor behavior and breakdown in soft ferroelectrics (1996) Phys. Rev. B, 53, pp. 14103-14111; Shur, V.Ya., Rumyantsev, E.L., Kinetics of ferroelectric domain structure: Retardation effects (1997) Ferroelectrics, 191, pp. 319-333; Shur, V.Ya., Popov, Yu.A., Korovina, N.V., Bound internal field in lead germinate (1984) Sov. Phys. Solid State, 26, pp. 471-474; Cross, L.E., Cline, T.W., Contributions to the dielectric response from charged domain walls in ferroelectric Pb5Ge3O11 (1976) Ferroelectrics, 11, pp. 333-336; Shur, V.Ya., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., Domain structure of lead germinate (1989) Ferroelectrics, 98, pp. 29-49; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys. Lett., 77, pp. 3636-3638; Lambeck, P.V., Jonker, G.H., Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects (1978) Ferroelectrics, 22, pp. 729-731; Kolmogorov, A.N., The statistical theory of metal crystallization (1937) Izv Acad Nauk USSR; Ser Math., 3, pp. 355-359; Avrami, M., Kinetics of phase change. 1. General theory (1939) J. Chem. Phys., 7, pp. 1103-1112; Shur, V.Ya., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics (1998) J. Appl. Phys., 84, pp. 445-451
Correspondence Address Shur, V.Ya.; Ferroelectric Laboratory, Ural State University, 620083 Ekaterinburg, Russian Federation; email: vladmir.shur@usu.ru
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus