Formation and evolution of charged domain walls in congruent lithium niobate / Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. // Applied Physics Letters. - 2000. - V. 77, l. 22. - P. 3636-3638.

ISSN:
00036951
Type:
Article
Abstract:
We present experimental evidence of the formation of stable charged domain walls (CDWs) in congruent lithium niobate during switching. CDW evolution under the action of field pulses was in situ visualized. CDW boundary motion velocity is about 60 μm/s at 20 kV/mm. Relief of CDW strongly depends on applied field. Dielectric response in the presence of CDW demonstrates the pronounced frequency dependence in the range 50-150°C. We propose the mechanism of CDW self-maintained propagation governed by self-consistent electrostatic interaction between the wall's steps. © 2000 American Institute of Physics.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000416958&partnerID=40&md5=ff773fa7badff12f8be98560802293e5
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000416958&partnerID=40&md5=ff773fa7badff12f8be98560802293e5
Affiliations Inst. of Phys. and Appl. Mathematics, Ural State University, Ekaterinburg 620083, Russian Federation
References Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., (1999) Appl. Phys. Lett., 75, p. 1673; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., (2000) Appl. Phys. Lett., 76, p. 143; Yamada, M., Saitoh, M., Ooki, H., (1996) Appl. Phys. Lett., 69, p. 3659; Lines, M.E., Glass, A.M., (1977) Principles and Application of Forroelectrics and Related Materials, p. 96. , Clarendon, Oxford; Shur, V.Ya., Rumyantsev, E.L., Subbotin, A.L., (1993) Ferroelectrics, 140, p. 305; Shur, V.Ya., Rumyantsev, E.L., (1998) J. Korean Phys. Soc., 32, pp. S727; Shur, V.Ya., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., (1989) Ferroelectrics, 98, p. 29; Ming, N., Hong, J., Feng, D., (1982) J. Mater. Sci., 17, p. 1663; Myers, L.E., (1995), Ph.D. thesis, Stanford University; Chynoweth, A.G., (1960) Phys. Rev., 117, p. 1235; Cross, L.E., Cline, T.W., (1976) Ferroelectrics, 11, p. 333; Prokhorov, A.M., Kuzminov, Y.S., (1990) Physics and Chemistry of Crystalline Lithium Niobate, , Adam Hilger, Bristol; Gopalan, V., Jia, Q.X., Mitchell, T.E., (1999) Appl. Phys. Lett., 75, p. 2482; Shur, V.Ya., (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, 10. , Gordon and Breach, New York, Chap. 6; Shur, V.Ya., Rumyantsev, E.L., Kuminov, V.P., Subbotin, A.L., Kozhevnikov, V.L., (1999) Phys. Solid State, 41, p. 269; Shur, V.Ya., Rumyantsev, E.L., (1997) Ferroelectrics, 191, p. 319; Fridkin, V.M., (1980) Ferroelectrics Semiconductora, , Consulting Bureau, New York; Miller, G.D., Batchko, R.G., Fejer, M.M., Byer, R.L., (1996) Proc. SPIE, 2700, p. 34
Correspondence Address Shur, V.Ya.; Inst. of Phys. and Appl. Mathematics, Ural State University, Ekaterinburg 620083, Russian Federation; email: vladimir.shur@usu.ru
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus